Atmospheric Precursors of and Response to Anomalous Arctic Sea Ice in CMIP5 Models Michael Kelleher*, James Screen

Introduction

Goal

▶ Better understand the coupled relationships between Arctic sea ice, the stratospheric polar vortex and cold winter temperatures over Eurasia

Background

- \blacktriangleright Arctic winter sea ice area is approx. 14 million km²
- ► Local surface heat and moisture flux changes from sea ice loss can cause near surface warming, further ice loss
- ▶ Remote changes, including impacts on the stratospheric polar vortex, have also been observed
- CMIP5 models relatively underused in investigating this area, excepting Boland et al. (2016)

Mechanisms

- Sea ice albedo-temperature feedback,
- Increased humidity and longwave radiation, and
- ▶ Increased poleward ocean and atmosphere transports (Walsh, 2014).
- Changes dependent on region of ice loss (Sun et al., 2015), though competing impacts reduce the total effect.

Data and Methods

Data

- Pre-industrial control simulations used (focus on natural variability)
- Subset of models selected that had different model genealogy (Knutti et al., 2013) and can be considered independent of one another.

Parameters of interest

- **Polar cap averaged** $(66 90 \circ N)$
 - Geopotential height
 - Sea ice area (concentration × grid cell area)
- **Mid latitude averaged** $(45 65^{\circ}N)$
 - > Zonal mean meridional eddy heat flux (v'T')
- Hemispheric sea level pressure
- ► Hemispheric surface air temperature

Methods

- \triangleright Compute standardized climatological anomalies: $x' = (x \overline{x})/s_x$ where \overline{x} and s_x are the monthly long-term mean and standard deviation for the nearest 30 years to the calculated monthly x.
- Standardized sea ice area anomalies regressed against each diagnostic variable anomalies
- ▶ Using leads/lags of up to 14 months.
- Sea ice was masked so only anomalies from each individual season were regressed against the atmospheric variables.

Areas of Interest

Figure 1: Geographic areas used. Dark grey is "polar cap", green is the Greenland Sea, blue denotes Barents-Kara, red is Okhotsk Sea, orange is Bering Sea.

Exeter Climate Systems, Department of Mathematics, University of Exeter

