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ABSTRACT

Jets coexist with planetary-scale waves in the turbulence of planetary atmospheres. The coherent com-

ponent of these structures arises from cooperative interaction between the coherent structures and the in-

coherent small-scale turbulence in which they are embedded. It follows that theoretical understanding of the

dynamics of jets and planetary-scale waves requires adopting the perspective of statistical state dynamics

(SSD), which comprises the dynamics of the interaction between coherent and incoherent components in the

turbulent state. In this work, the stochastic structural stability theory (S3T) implementation of SSD for

barotropic beta-plane turbulence is used to develop a theory for the jet–wave coexistence regime by sepa-

rating the coherent motions consisting of the zonal jets together with a selection of large-scale waves from the

smaller-scale motions that constitute the incoherent component. It is found that mean flow–turbulence in-

teraction gives rise to jets that coexist with large-scale coherent waves in a synergistic manner. Large-scale

waves that would exist only as damped modes in the laminar jet are found to be transformed into expo-

nentially growingwaves by interactionwith the incoherent small-scale turbulence, which results in a change in

the mode structure, allowing the mode to tap the energy of the mean jet. This mechanism of destabilization

differs fundamentally and serves to augment the more familiar S3T instabilities in which jets and waves arise

from homogeneous turbulence with the energy source exclusively from the incoherent eddy field and provides

further insight into the cooperative dynamics of the jet–wave coexistence regime in planetary turbulence.

1. Introduction

A regime in which jets, planetary-scale waves, and

vortices coexist is commonly observed in the turbulence

of planetary atmospheres, with the banded winds and

embedded vortices of Jupiter and the Saturn North

Polar vortex constituting familiar examples (Vasavada

and Showman 2005; Sánchez-Lavega et al. 2014).

Planetary-scale waves in the jet stream and vortices,

such as cutoff lows, are also commonly observed in

Earth’s atmosphere. Conservation of energy and ens-

trophy in undamped 2D turbulence implies continual

transfer of energy to the largest available spatial scales

(Fjørtoft 1953). This upscale transfer provides a con-

ceptual basis for expecting the largest scales to become

increasingly dominant as the energy of turbulence

forced at smaller scale is continually transferred to the

larger scales. However, the observed large-scale struc-

ture in planetary atmospheres is dominated not by in-

coherent large-scale turbulent motion, as would be

expected to result from the incoherent phase relation of

Fourier modes in a turbulent cascade, but rather by

coherent zonal jets, vortices, and waves of highly specific

form. Moreover, the scale of these coherent structures is
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distinct from the largest scale permitted in the flow. An

early attempt to understand the formation of jets in plan-

etary turbulence did not address the structure of the jet

beyond attributing the jet scale to arrest of the incoherent

upscale energy cascade at the length scale set by the value

of the planetary vorticity gradient and a characteristic flow

velocity (Rhines 1975). In Rhines’s interpretation, this is

the scale at which the turbulent energy cascade is inter-

cepted by the formation of propagating Rossby waves.

While this result provides a conceptual basis for expecting

zonal structures with spatial scale limited by the planetary

vorticity gradient to form in beta-plane turbulence, the

physical mechanism of formation, the precise morphology

of the coherent structures, and their stability are not ad-

dressed by these general considerations.

Our goal in this work is to continue development of a

general theory for the formation of finite-amplitude

structures in planetary turbulence, specifically address-

ing the regime in which jets and planetary waves coexist.

This theory identifies specific mechanisms responsible

for formation and equilibration of coherent structures in

planetary turbulence. A number of mechanisms have

been previously advanced to account for jet, wave, and

vortex formation. One such mechanism that addresses

exclusively jet formation is vorticity mixing by breaking

Rossby waves leading to homogenization of potential

vorticity (PV) in localized regions (Baldwin et al. 2007;

Dritschel and McIntyre 2008), resulting in the case of

barotropic beta-plane turbulence in broad retrograde

parabolic jets and relatively narrow prograde jets with

associated staircase structure in the absolute vorticity.

While PV staircases have been obtained in some nu-

merical simulations of strong jets (Scott and Dritschel

2012), vorticity mixing in the case of weak to moderately

strong jets is insufficient to produce a prominent staircase

structure. Moreover, jets have been shown to form as a

bifurcation from homogeneous turbulence, in which case

the jet is perturbative in amplitude and wave breaking is

not involved (Farrell and Ioannou 2003, 2007).

Equilibrium statistical mechanics has also been ad-

vanced to explain formation of coherent structures [e.g.,

by Miller (1990) and Robert and Sommeria (1991)]. The

principle is that dissipationless turbulence tends to

produce configurations that maximize entropy while

conserving both energy and enstrophy. These maximum

entropy configurations in beta-plane turbulence assume

the coarse-grained structure of zonal jets (cf. Bouchet

and Venaille 2012). However, the relevance of these

results to the formation, equilibration, and maintenance

of jets in strongly forced and dissipated planetary flows

remains to be established.

Zonal jets and waves can also arise frommodulational

instability (Lorenz 1972; Gill 1974; Manfroi and Young

1999; Berloff et al. 2009; Connaughton et al. 2010). This

instability produces spectrally nonlocal transfer to the

unstable structure from forced waves and therefore

presumes a continual source of waves with the required

form. In baroclinic flows, baroclinic instability has been

advanced as the source of these waves (Berloff et al.

2009). From the broader perspective of the statistical

state dynamics theory used in this work, modulational

instability is a special case of a stochastic structural

stability theory (S3T) (Parker and Krommes 2014;

Parker 2014; Bakas et al. 2015). However, modulational

instability does not include the mechanisms for realistic

equilibration of the instabilities at finite amplitude,

although a Landau-type term has been used to produce

equilibration of themodulational instability (cf. Manfroi

and Young 1999).

Another approach to understanding the jet–wave

coexistence regime is based on the idea that jets and

waves interact in a cooperative manner. Such a dynamic

is suggested, for example, by observations of a prom-

inent wavenumber-5 disturbance in the Southern

Hemisphere (Salby 1982). Using a zonally symmetric

two-layer baroclinic model, Cai and Mak (1990) dem-

onstrated that storm-track organization by a propagat-

ing planetary-scale wave resulted in modulation in the

distribution of synoptic-scale transients configured on

average to maintain the organizing planetary-scale

wave. The symbiotic forcing by synoptic-scale tran-

sients that, on average, maintains planetary-scale waves

was traced to barotropic interactions in the studies of

Robinson (1991) and Qin and Robinson (1992). While

diagnostics of simulations such as these are suggestive,

comprehensive analysis of the essentially statistical

mechanism of the symbiotic regime requires obtaining

solutions of the statistical state dynamics underlying it,

and indeed the present work identifies an underlying

statistical mechanism by which transients are systemat-

ically organized by a planetary-scale wave so as to, on

average, support that planetary-scale wave in a spec-

trally nonlocal manner.

S3T provides a statistical state dynamics (SSD)-based

theory accounting for the formation, equilibration, and

stability of coherent structures in turbulent flows. The

underlying mechanism of jet and wave formation

revealed by S3T is the spectrally nonlocal interaction

between the large-scale structure and the small-scale

turbulence (Farrell and Ioannou 2003). S3T is a non-

equilibrium statistical theory based on a closure

comprising the nonlinear dynamics of the coherent

large-scale structure together with the consistent

second-order fluxes arising from the incoherent eddies.

The S3T system is a cumulant expansion of the turbu-

lence dynamics closed at second order (cf. Marston et al.
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2008), which has been shown to become asymptotically

exact for large-scale jet dynamics in turbulent flows in

the limit of zero forcing and dissipation and infinite

separation between the time scales of evolution of the

large-scale jets and the eddies (Bouchet et al. 2013;

Tangarife 2015). S3T has been employed to understand

the emergence and equilibration of zonal jets in plane-

tary turbulence in barotropic flows on a beta plane and

on the sphere (Farrell and Ioannou 2003, 2007, 2009a;

Marston et al. 2008; Srinivasan and Young 2012;

Marston 2012; Constantinou et al. 2014; Bakas and

Ioannou 2013b; Tobias and Marston 2013; Parker and

Krommes 2014), in baroclinic two-layer turbulence

(Farrell and Ioannou 2008, 2009c), in the formation of

dry convective boundary layers (Ait-Chaalal et al. 2016),

and in drift–wave turbulence in plasmas (Farrell and

Ioannou 2009b; Parker and Krommes 2013). It has been

used in order to study the emergence and equilibration

of finite-amplitude propagating nonzonal structures in

barotropic flows (Bakas and Ioannou 2013a, 2014; Bakas

et al. 2015) and the dynamics of blocking in two-layer

baroclinic atmospheres (Bernstein and Farrell 2010). It

has also been used to study the role of coherent struc-

tures in the dynamics of the 3D turbulence of wall-

bounded shear flows (Farrell and Ioannou 2012; Thomas

et al. 2014, 2015; Farrell et al. 2015, manuscript sub-

mitted to J. Fluid Mech.).

In certain cases, a barotropic S3T homogeneous tur-

bulent equilibrium undergoes a bifurcation in which

nonzonal coherent structures emerge as a function of

turbulence intensity prior to the emergence of zonal jets,

and when zonal jets emerge a new type of jet–wave

equilibrium forms (Bakas and Ioannou 2014). In this

paper, we use S3T to further examine the dynamics of

the jet–wave coexistence regime in barotropic beta-

plane turbulence. To probe the jet–wave–turbulence

dynamics in more depth, a separation is made between

the coherent jets and large-scale waves and the smaller-

scale motions, which are considered to constitute the

incoherent turbulent component of the flow. This sep-

aration is accomplished using a dynamically consistent

projection in Fourier space. By this means, we show that

jet states maintained by turbulence may be unstable to

emergence of nonzonal traveling waves and trace these

unstable eigenmodes to what would, in the absence of

turbulent fluxes, have been damped wave modes of the

mean jet. Thus, we show that the cooperative dynamics

between large-scale coherent and small-scale incoherent

motion is able to transform dampedmodes into unstable

modes by altering the mode structure, allowing it to tap

the energy of the mean jet.

In this work, we also extend the S3T stability analysis

of homogeneous equilibria (Farrell and Ioannou 2003,

2007; Srinivasan and Young 2012; Bakas and Ioannou

2013a,b, 2014; Bakas et al. 2015) to the S3T stability of

jet equilibria. We present new methods for the calculation

of the S3T stability of jet equilibria, extending the work of

Farrell and Ioannou (2003) and Parker and Krommes

(2014), which was limited to the study of the S3T stability

of jets only with respect to zonal perturbations, to the S3T

stability of jets to nonzonal perturbations.

2. Formulation of S3T dynamics for barotropic
beta-plane turbulence

Consider a nondivergent flow u5 (u, y) on a beta

plane with coordinates x5 (x, y), in which x is the zonal

direction and y is the meridional direction, and with the

flow confined to a periodic channel of size 2pL3 2pL.

The velocity field can be obtained from a streamfunction

c as u5 ẑ3=c, with ẑ the unit vector normal to the x–y

plane. The component of vorticity normal to the plane of

motion is z 5
def

›xy2 ›yu and is given as z5Dc, with
D 5

def
›2x 1 ›2y the Laplacian operator. In the presence of

dissipation and stochastic excitation, the vorticity

evolves according to

›
t
z52u � =z2by2 rz1 nDz1

ffiffiffi
«

p
j , (1)

in which the flow is damped by Rayleigh dissipation with

coefficient r and viscous dissipation with coefficient n.

The stochastic excitation maintaining the turbulence

j(x, t) is a Gaussian random process that is temporally

delta correlated with zero mean.

Equation (1) is nondimensionalized using length scale

L and time scale T. The double-periodic domain be-

comes 2p3 2p, and the nondimensional variables in (1)

are z*5 z/T21, u*5 u/(LT21), j*5 j/(L21T21/2),

«*5 «/(L2T23), b*5b/(LT)21, r*5 r/T21, and

n*5 n/(L2T21), where asterisks denote nondimensional

units. Hereinafter, all variables are assumed non-

dimensional, and the asterisk is omitted.

We review now the formulation of the S3T approxi-

mation to the SSD of (1). The S3T dynamics was in-

troduced in the matrix formulation by Farrell and

Ioannou (2003). Marston et al. (2008) showed that S3T

comprises a canonical second-order closure of the exact

statistical state dynamics and derived it alternatively

using the Hopf formulation. Srinivasan and Young

(2012) obtained a continuous formulation that facilitates

analytical explorations of S3T stability of turbulent

statistical equilibria.

An averaging operator by which mean quantities are

obtained, denoted by angle brackets, is required in order

to form the S3T equations. Using this averaging opera-

tor, the vorticity of the flow is decomposed as
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z5Z1 z0 , (2)

where

Z(x, t) 5
def hz(x, t)i (3)

is the mean field or the first cumulant of the vorticity

and, similarly, for the derived flow fields (i.e., u, c). The

example, for example, z, satisfy the important property

that

hz0i5 0, (4)

which relies on the averaging operation satisfying the

Reynolds condition (cf. Ait-Chaalal et al. 2016) that, for

any two fields f and g,

hhf igi5 h f ihgi . (5)

The equation for the first cumulant is obtained by

averaging (1), which after repeated use of (5) becomes

›
t
Z1U � =Z1bV1 rZ2 nDZ52= � hu0z0i , (6)

in which we have assumed hji5 0. The term 2= � hu0z0i
represents the source of mean vorticity arising from the

eddy vorticity flux divergence.

The second cumulant of the eddy vorticity is the

covariance

C(x
a
, x

b
, t) 5

def hz0(x
a
, t)z0(x

b
, t)i, (7)

which is a function of five variables: time t and the co-

ordinates of the two points xa and xb. We write (7)

concisely as C5 hz0az0bi.
All second moments of the velocities can be expressed

as linear functions of C. For example, the eddy vorticity

flux divergence source term, = � hu0(x, t)z0(x, t)i, in the

mean vorticity equation [(6)] can be written as a function

of C as follows:

= � hu0z0i5 1

2
= � hu0

az
0
b 1 u0

bz
0
aia5b

5
1

2
= � [ẑ3 (=

a
D21
a 1=

b
D21

b )hz0az0bi]a5b

5
1

2
= � [ẑ3 (=

a
D21
a 1=

b
D21

b )C]
a5b

5
def
R(C) , (8)

in which u0
j 5
def

u0(xj, t) and the subscripts in the differ-

ential operators indicate the specific independent spatial

variable on which the operator is defined. To derive (8),

we made use of u0 5 ẑ3=D21z0, with D21 the inverse

Laplacian. The notation a5 b indicates that the function

of the five independent variables, xa, xb, and t, in (8) is to

be considered a function of two independent spatial

variables and t by setting xa 5 xb 5 x. By denoting the

divergence of the mean of the perturbation vorticity flux

= � hu0z0i in (8) as R(C), we underline that the forcing of

the mean vorticity equation [(6)] by the eddies depends

on the second cumulant (the covariance of the vorticity

field). Adopting this notation for the divergence of the

mean of the eddy vorticity flux, the equation for the

mean vorticity (the first cumulant) [(6)] takes the fol-

lowing form:

›
t
Z1U � =Z1bV1 rZ2 nDZ52R(C) . (9a)

The equation for the perturbation vorticity is obtained

by subtracting (6) from (1):

›
t
z0 52(U � =z0 1 u0 � =Z)2= � (u0z0 2 hu0z0i)

2by0 2 rz0 1 nDz0 1
ffiffiffi
«

p
j

5Az0 2= �(u0z0 2 hu0z0i)1 ffiffiffi
«

p
j , (9b)

where

A5
def

2U � =2[b›
x
2 (DU) � =]D21 2 r1 nD . (10)

Using (9b), definition (7), and noting that hz0i5 0, we

obtain the evolution equation for C:

›
t
C5 hz0a›tz0b 1 z0b›tz

0
ai

5 (A
a
1A

b
)C1

ffiffiffi
«

p hz0ajb 1 z0bjai
1 h[=

a
� (u0

az
0
a)]z

0
b 1 [=

b
� (u0

bz
0
b)]z

0
ai . (11)

Both terms h[=a � (u0
az

0
a)]z

0
bi and h[=b � (u0

bz
0
b)]z

0
ai in (11)

can be expressed as linear functions of the third cumu-

lant of the vorticity fluctuations, G 5
def hz0az0bz0ci, for

example,

h[=
a
� (u0

az
0
a)]z

0
bi5

1

2
h=

a
� [u0

az
0
c 1 u0

cz
0
a]c/a

z0bi

5
1

2
=
a
� [ẑ3(=

a
D21
a 1=

c
D21
c )hz0az0bz0ci]c/a

5
1

2
=
a
� [ẑ3 (=

a
D21
a 1=

c
D21
c )G]

c/a
,

(12)

explicitly revealing that the dynamics of the second

cumulant of the eddy vorticity is not closed (notation

c/ a indicates that the function of independent spatial

variables xa, xb, and xc should be considered a function

of only xa and xb after setting xc / xa). The S3T system

is obtained by truncating the cumulant expansion at

second order either by setting the third cumulant term in
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(11) equal to zero or by assuming that the third cumulant

term is proportional to a state-independent covariance

Q(xa, xb). The latter is equivalent to representing both

the nonlinearity, = � (u0z0 2 hu0z0i), and the externally

imposed stochastic excitation in (9b) together as a single

stochastic excitation
ffiffiffi
«

p
j(x, t) with zero mean and two-

point and two-time correlation function:

hj(x
a
, t

1
)j(x

b
, t

2
)i5 d(t

1
2 t

2
)Q(x

a
, x

b
), (13)

from which it can be shown that1

hz0ajb 1 z0bjai5
ffiffiffi
«

p
Q(x

a
, x

b
), (14)

and consequently (11) simplifies to the time-dependent

Lyapunov equation:

›
t
C5 (A

a
1A

b
)C1 «Q . (15)

Using parameterization (13) to account for both the

eddy–eddy nonlinearity, = � (u0z0 2 hu0z0i), and the ex-

ternal stochastic excitation,
ffiffiffi
«

p
j, implies that full cor-

respondence between the mean equation [(9a)] coupled

with the parameterized eddy equation [(9b)] and the

nonlinear dynamics [(1)] requires that the stochastic

term accounts fully for modification of the perturbation

spectrum by the eddy–eddy nonlinearity in addition to

the explicit externally imposed stochastic excitation. It

follows that the stochastic parameterization required to

obtain agreement between the approximate statistical

state dynamics and the nonlinear simulations differs

from the explicit external forcing alone unless the eddy–

eddy interactions are negligible.

The resulting S3T system is an autonomous dynamical

system involving only the first two cumulants that de-

termines their consistent evolution. The S3T system

for a chosen averaging operator is

›
t
Z52U � =Z2bV2 rZ1 nDZ2R(C) , (16a)

›
t
C5 (A

a
1A

b
)C1 «Q . (16b)

For the purpose of studying turbulence dynamics, it is

appropriate to choose an averaging operator that iso-

lates the physical mechanism of interest. Typically, the

averaging operator is chosen to separate the coherent

structures from the incoherent turbulent motions. Co-

herent structures are critical components of turbulence

in shear flow, both in the energetics of interaction be-

tween the large and small scales and in the mechanism

by which the statistical steady state is determined.

Retaining the nonlinearity and structure of these flow

components is crucial to constructing a theory of

shear-flow turbulence that properly accounts for the

role of the coherent structures. In contrast, non-

linearity and detailed structure information is not re-

quired to account for the role of the incoherent

motions, and the statistical information contained in

the second cumulant suffices to include the influence

of these on the turbulence dynamics. This results in a

great practical as well as conceptual simplification that

allows a theory of turbulence to be constructed. In the

case of beta-plane turbulence, a phenomenon of in-

terest is the formation of coherent zonal jets from the

background of incoherent turbulence. To isolate the

dynamics of jet formation, zonal averaging is appro-

priate. Alternatively, if the focus of study is the

emergence of large planetary-scale waves, the aver-

aging operation would be an appropriate extension of

the Reynolds average over an intermediate spatial

scale to produce a spatially coarse-grained–fine-

grained flow separation. An averaging operation of

this form was used by Bernstein and Farrell (2010) in

their S3T study of blocking in a two-layer baroclinic

atmosphere and by Bakas and Ioannou (2013a, 2014)

to provide an explanation for the emergence of trav-

eling wave structures (zonons) in barotropic turbu-

lence. However, the Reynolds average defined over an

intermediate time or space scale,

h f (x, t)i 5def 1

2T

ðt1T

t2T

dtf (x, t), (17a)

or

h f (x, t)i 5def 1

4XY

ðx1X

x2X

dx0
ðy1Y

y2Y

dy0 f (x0, t), (17b)

satisfies the Reynolds condition (5) only approximately

and to the extent that there is adequate scale separation.

The S3T system that was derived in (16) is exact if the

averaging operation is the zonal average and an ade-

quate approximation for jets and a selection of large-

scale waves if there is sufficient scale separation to

satisfy the Reynolds condition (5).

Because the scale separation assumed in (16) is only

approximately satisfied in many cases of interest, an al-

ternative formulation of S3T will now be obtained in

which separation into two independent interacting

components of different scales is implemented [a similar

formulation was independently derived by Marston

et al. (2016)]. This formulation makes more precise the

dynamics of the coherent jet and wave interacting with

the incoherent turbulence regime in S3T.

1Assumption (13) implies identity (14) even when z0 obeys the
nonlinear (9b) (cf. Farrell and Ioannou 2016; Constantinou 2015).
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The required separation is obtained by projecting

the dynamics (1) on two distinct sets of Fourier

harmonics. Consider the Fourier expansion of the

streamfunction,

c5 �
kx

�
ky

ĉ
k
eik�x , (18)

with k5 (kx, ky) and the projection operator PK defined

as (cf. Frisch 1995)

P
K
c 5

def �
jkxj#K

�
ky

ĉ
k
eik�x (19)

so that the large-scale flow is identified through

streamfunction C5PKc and the small-scale flow

through c0 5 (I2PK)c, where

(I2P
K
)c 5

def �
jkxj.K

�
ky

ĉ
k
eik�x , (20)

with I the identity. Similarly, vorticity and velocity fields

are decomposed into z5Z1 z0 and u5U1u0.
From (1) and under the assumption that the stochastic

excitation projects only on the small scales, the large

scales evolve according to

›
t
Z52P

K
[U � =Z1= � (u0z0)]2P

K
(U � =z0 1 u0 � =Z)

2bV2 rZ1 nDZ ,

(21a)

while the small scales evolve according to

›
t
z0 52(I2P

K
)(U � =z0 1 u0 � =Z)

2 (I2P
K
)[U � =Z1= � (u0z0)]

2by0 2 rz0 1 nDz0 1
ffiffiffi
«

p
j . (21b)

If PK were an averaging operator that satisfied the

Reynolds condition (5), term PK(U � =z0 1 u0 � =Z) in

(21a) would vanish. Here it does not, as both of these

terms scatter energy to the large scales. However, an

energetically closed S3T system for the first two cu-

mulants can be derived by making the quasi-linear

(QL) approximation in (21b): that is, neglect the terms

(I2PK)[U � =Z1= � (u0z0)] that represent projection

of the eddy–eddy and large-scale–large-scale in-

teractions on the eddy-flow components and addi-

tionally neglect the terms PK(U � =z0 1 u0 � =Z) in the

large-scale (21a). These later terms as well as

(I2PK)(U � =Z) are not of primary importance to the

dynamics and in any case vanish with sufficient scale

separation. With these terms neglected we obtain the

projected QL system:

›
t
Z52bV2 rZ1 nDZ

2P
K
[U � =Z1= � (u0z0)] , (22a)

›
t
z0 52(I2P

K
)(U � =z0 1 u0 � =Z)

2by0 2 rz0 1 nDz0 1
ffiffiffi
«

p
j , (22b)

which conserves total energy and enstrophy in the absence

of forcing and dissipation. The conservation properties of

the full barotropic equations are retained because the

typically small terms that have been discarded scatter en-

ergy and enstrophy between (21a) and (21b).

Assuming Z5PK(z) is the coherent flow and

C5 hz0(xa, t)z0(xb, t)i is the covariance of the incoherent
eddies, with the angle brackets indicating an average

over forcing realizations, we obtain the corresponding

S3T system for the first two cumulants:

›
t
Z52bV2 rZ1 nDZ2P

K
[U � =Z1R(C)]

and

(23a)

›
t
C5 (I2P

Ka
)A

a
C1 (I2P

Kb
)A

b
C1 «Q . (23b)

It can be shown that these equations have the same

quadratic conservation properties as the S3T equations

in (16) and the full nonlinear equations in (1). Note that,

for K5 0, this projection formulation reduces to the

zonal mean–eddy formulation employed previously to

study zonal jet formation (Farrell and Ioannou 2003,

2007; Srinivasan and Young 2012).

3. Specification of the parameters used in this work

Assume that the large-scale phase coherent motions

occupy zonal wavenumbers jkxj5 0, 1, and all zonal

wavenumbers jkxj$ 2 represent phase-incoherent mo-

tions so that PK has K5 1.

The covariance of the stochastic excitation in (13) is

assumed to be spatially homogeneous [i.e., Q(xa, xb)5
Q(xa 2 xb)] and can be associated with its Fourier power

spectrum Q̂(k):

Q(x
a
2 x

b
)5

ð
d2k

(2p)2
Q̂(k)eik�(xa2xb) . (24)

Unless otherwise indicated, calculations are performed

with the anisotropic power spectrum:

Q̂(k)5
(4p/N

f
)k

x
e2k2d2

k
x
/jk

x
j2 erf(k

x
d)

�
kf2Kf

[d(k
x
2 k

f
)1 d(k

x
1 k

f
)] ,

(25)

with k5 jkj, d5 0:2, Kf 5 f2, 3, . . . , 14g the zonal

wavenumbers that are forced, and Nf the total number
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of excited zonal wavenumbers. This spectrum is biased

toward small ky wavenumbers, consistent with the as-

sumption that the forcing arises from baroclinic growth

processes. The spatial excitation covariance Q̂(k) has

been normalized so that each kf injects equal energy and

the total energy injection rate is unity: that is, Q̂(k)

satisfies2

ð
d2k

(2p)2
Q̂(k)

2k2
5 1. (26)

With this normalization, the rate of energy injection by

the stochastic forcing in (1), (16), (21), (22), and (23) is

« and is independent of the state of the system, because

j has been assumed temporally delta correlated.

We choose b5 10, r5 0:15, and n5 0:01 as our pa-

rameters. For L5 1200 km and T5 6 days, these cor-

respond to b5 1:63 10211 m21 s21 and an e-folding time

for linear damping of 40 days. The diffusion coefficient

n5 0:01 is chosen so that scales on the order of the grid

are damped in one nondimensional time, and it corre-

sponds to an e-folding time for scales on the order of

1000 km (nondimensional wavenumber kx 5 7 in our

channel) of approximately 400 days. With these pa-

rameters, the channel has zonal extent about 7500 km,

which corresponds to 1/4 of the latitude circle at 458, one
unit of velocity corresponds to 23m s21, and non-

dimensional «5 1 corresponds to an energy input rate of

1:033 1025 Wkg21. Simulations presented in this work

are performed using a pseudospectral code with

Nx 5Ny 5 64 grid points.

4. S3T jet equilibria

Fixed points of the S3T system correspond to statis-

tical equilibria of the barotropic dynamics. We study

these statistical equilibria as a function of «. For all

values of « and all homogeneous stochastic forcings,

there exist equilibria that are homogeneous (both in x

and y) with

Uh 5 (0; 0), Ch(x
a
2x

b
)5«

ð
d2k

(2p)2
Q̂(k)

2(r1 nk2)
eik�(xa2xb) ,

(27)

where Q̂(k) is the power spectrum of the stochastic

forcing, defined in (24).

However, these equilibria become unstable when

« exceeds a critical value. For values of « exceeding this

critical value, zonal jets arise from a supercritical bi-

furcation (Farrell and Ioannou 2003, 2007; Srinivasan

and Young 2012; Parker and Krommes 2013, 2014;

Constantinou et al. 2014). These jets are constrained

by the periodic domain of our simulations to take

discrete values of meridional wavenumber ny. The

critical curve in the «–ny plane separating the region in

which only stable homogeneous turbulence equilibria

exist from the region in which stable or unstable jet

equilibria exist is shown, for the chosen parameters, in

FIG. 1. (a) Normalized turbulent energy input rates «/«c at which

the homogeneous state becomes unstable to jet (nx 5 0) perturba-

tions as a function of the jet meridional wavenumber ny. Dots in-

dicate wavenumbers allowed in the channel; «c is the minimum

energy input rate for jet emergence. Jets first emerge in an un-

restricted eigencalculation at «c 5 0:2075 with unallowed wave-

number ny 5 2:82. For «/«c , 1:18, the homogeneous state is stable to

ny 5 2 mean-flow perturbations and ny 5 2 jet equilibria do not exist.

(b) The ny 5 2 zonal jet S3T equilibrium structure at

«/«c 5 1. 2, 2, 5, 9, 13. 65 [marked with 3 in (a)]. Increasing super-

criticality results in increasing equilibrium jet amplitude and de-

viation of the jet structure from the sinusoidal eigenmode form.

2 A stochastic term
ffiffiffi
«

p
j with spatial covariance given by (13)

can be shown to inject average energy per unit area in the fluid at a

rate (LxLy)
21Ð

d2xhc ffiffiffi
«

p
ji5 «½(2p)22Ð

d2kQ̂(k)/(2k2)�. Since di-

mensional j has units L21T21/2, we obtain from (13) that Q has

dimensions L22; therefore its Fourier transform Q̂ is dimension-

less. Hence, (26) is valid for all values of the dimensional

parameters.
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Fig. 1. This marginal curve was calculated using the

eigenvalue relation for inhomogeneous perturbations

to the homogeneous S3T equilibrium in the presence

of diffusive dissipation, in the manner of Srinivasan

and Young (2012) and Bakas and Ioannou (2014), with

the wavenumber ny taking continuous values but

with the understanding that only integer values of ny

satisfy the quantization conditions of the channel. S3T

instability of the homogeneous state first occurs at

ny 5 2:82 for «c 5 0:2075, which corresponds to

2:153 1026 Wkg21. Jets with ny 5 3 emerge at 1:005«c,

and jets with ny 5 2 at 1:18«c. Examples of ny 5 2 jet

equilibria are shown in Fig. 1b. The ny 5 2 jet equilibria

have mean flows and covariances that are periodic in y

with period a5p and satisfy the time-independent

S3T equations:

1

2
[(›

xa
D21
a 1 ›

xb
D21

b )Ce]
a5b

5 rUe 2 n›2yU
e , (28a)

(Ae
a 1Ae

b)C
e 52«Q , (28b)

with

Ae 52Ue›
x
2 [b2 (›2yU

e)]›
x
D21 2 r1 nD . (29)

A basic property of the jet equilibria, which is shared

by all S3T equilibria, is that they are hydrodynamically

stable (cf. Farrell and Ioannou 2016). Stability is en-

forced at the discrete wavenumbers consistent with

the finite domain of the problem and not necessarily

on the continuum of wavenumbers appropriate for an

unbounded domain.

5. S3T stability of the jet equilibria

We are interested in the S3T stability of these ny 5 2

jet equilibria to nonzonal perturbations. The stability

of jet equilibria to homogeneous in x perturbations has

been investigated previously by Farrell and Ioannou

(2003, 2007) for periodic domains and by Parker and

Krommes (2014) and Parker (2014) for infinite do-

mains. A comprehensive methodology for determining

the stability of jet equilibria to zonal and nonzonal

perturbations was developed by Constantinou (2015).

Recalling these results, perturbations (dZ, dC) about

the equilibrium state (Ue, Ce), satisfying (28), evolve

according to3

›
t
dZ5P

K
[AedZ1R(dC)] , (30a)

›
t
dC5 (I2P

Ka
)(Ae

adC1 dA
a
Ce)

1 (I2P
Kb
)(Ae

bdC1 dA
b
Ce) , (30b)

with R as in (8), Ae defined in (29), and

dA 5
def

2 dU � =1 (DdU) � =D21 , (31)

where dU5 ẑ3=D21dZ is the perturbation

velocity field.

Because of the homogeneity of the jet equilibria in the

zonal (x) direction, the mean-flow eigenfunctions are

harmonic functions in x, and also, because the equilib-

rium mean flow and covariance are periodic in y with

period a [i.e., Ue(y1a)5Ue(y)], Bloch’s theorem re-

quires that each eigenfunction is a plane wave in y (eiqyy)

modulated by a periodic function with period a in y

(Cross andGreenside 2009; Parker and Krommes 2014).

Therefore, the eigenfunctions take the following form:

dZ5 einxx1iqyy1std ~Z
nx,qy

(y) , (32a)

dC5 einx(xa1xb)/21iqy(ya1yb)/21st[d ~C
nx ,qy

(x
a
2 x

b
, y

a
, y

b
)

1 d ~C
nx ,qy

(x
b
2 x

a
, y

b
, y

a
)],

(32b)

with jnxj#K, d ~Znx,qy(y) periodic in y with period a and

d ~Cnx,qy(xa 2 xb, ya, yb) periodic in ya and yb with period

a. We have chosen dC to be a symmetric function of x

under the exchange xa4xb.
4 The zonal wavenumber nx

takes integer values in order to satisfy the periodic

boundary conditions in x, and the Bloch wavenumber

qy takes integer values in the interval jqyj#p/a in or-

der to satisfy the periodic boundary conditions in y

(Constantinou 2015). The eigenvalue s determines the

S3T stability of the jet as a function of nx and qy. The jet

is unstable when sr 5
def

Re(s). 0, and the S3T ei-

genfunction propagates in x with phase velocity

cr 5
def

2Im(s)/nx for nx 6¼ 0. When nx 5 0, the ei-

genfunctions are homogeneous in the zonal direction

and correspond to a perturbation zonal jet. When

nx 6¼ 0, the eigenfunctions are inhomogeneous in both x

and y and correspond to a wave. These perturbations,

when unstable, can form nonzonal large-scale structures

that coexist with themean flow, as in Bakas and Ioannou

3 These perturbations equations are valid for equilibria in-

homogeneous in both x and y directions. In the case of perturba-

tions that are homogeneous in x, the projection operators are

redundant.

4 The covariance eigenfunction does not need to be symmetric or

Hermitian in its matrix representation, but both symmetric and

asymmetric parts have the same growth rate. For a discussion of the

properties of covariance eigenvalue problems see Farrell and

Ioannou (2002).
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(2014). For jets withmeridional periodicity a5p, qy can

take only the values qy 5 0, 1, and because these jets

have a Fourier spectrum with power only at the even

wavenumbers, a qy 5 0 Bloch eigenfunction has power

only at even wavenumbers, while a qy 5 1 Bloch ei-

genfunction has power only at odd wavenumbers.

The maximum growth rate sr of the S3T ei-

genfunction perturbations to the S3T equilibrium jet

with ny 5 2 (cf. Fig. 1b) is plotted in Fig. 2a as a function

of supercriticality «/«c for both perturbations of jet form

(nx 5 0) and nonzonal form (with nx 5 1). Consider first

the stability of the S3T jet to jet perturbations, that is, to

nx 5 0 eigenfunctions. Recall that the jets with ny 5 2

emerge at «/«c 5 1:18, and for «/«c , 1:18 (shaded region

in Fig. 2a) there are no ny 5 2 equilibria. The dashed line

shows the smallest decay/fastest growth rate of pertur-

bations to the homogeneous equilibrium state that exists

prior to jet formation. Themost-unstable eigenfunctions

of the homogeneous equilibria at these « are jets with

wavenumber ny 5 3 (not shown; cf. Figure 1a). The

small-amplitude equilibrated ny 5 2 jets that form when

«marginally exceeds the critical «/«c 5 1:18 are unstable

to jet formation at wavenumber ny 5 3, with jet ei-

genfunction similar to the maximally growing ny 5 3

eigenfunction of the homogeneous equilibrium. This

S3T instability of the small-amplitude ny 5 2 jet equi-

libria to ny 5 3 jet eigenfunctions, which is induced by

the ny 5 3 instability of the nearby homogeneous equi-

librium, was identified by Parker and Krommes (2014)

as the universal Eckhaus instability of the equilibria that

form near a supercritical bifurcation. The Eckhaus un-

stable S3T ny 5 2 jets are attracted to the S3T ny 5 3

stable jet equilibrium over the small interval

1:18, «/«c , 1:44. At higher supercriticalities in the in-

terval 1:44, «/«c , 10:14, the ny 5 2 jets become stable5

to nx 5 0 eigenfunctions. The jets eventually become

unstable to nx 5 0 eigenfunctions for «/«c . 10:14. The

most-unstable nx 5 0 eigenfunction at «/«c 5 11 is a Bloch

qy 5 1 eigenfunction, dominated by an ny 5 1 jet that will

make the jets of the ny 5 2 equilibrium merge to form an

ny 5 1 jet equilibrium (cf. Farrell and Ioannou 2007).

The maximum growth rate of the jet equilibria to

nx 5 1 nonzonal eigenfunctions is also shown in Fig. 2a.

Unlike the jet eigenfunctions, which are stationary with

respect to the mean flow, these eigenfunctions propa-

gate retrograde with respect to the jet minimum; the

phase velocity of the eigenfunction with maximum real

part eigenvalue is plotted as a function of «/«c in Fig. 2b.

Eigenfunctions with nx 5 1 are stable for jets with

FIG. 2. (a) Maximum S3T growth rates sr as a function of «/«c for nx 5 0 and nx 5 1 per-

turbations to the ny 5 2 equilibrium jets. The jet is unstable to nx 5 0 perturbations for

1:18# «/«c # 1:44 and «/«c $ 10:14 and to nx 5 1 wave perturbations for «/«c $ 6:80. (b) The

corresponding phase speeds cr of the most-unstable S3T eigenfunction.

5 The periodic boundary conditions always allow the existence

of a jet eigenfunction with zero growth and with structure that of

the y derivative of the equilibrium jet and covariance. This ei-

genfunction leads to a translation of the equilibrium jet and its

associated covariance in the y direction. The existence of this

neutral eigenfunction can be a verified by taking the y derivative of

(28). We do not include this obvious neutral eigenfunction in the

stability analysis.
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FIG. 3. (a) Contour plot of the streamfunction of the least-stable nonzonal nx 5 1 S3T mean-flow

wave eigenfunction of the ny 5 2 jet equilibrium at «/«c 5 1:2. This wave has growth rate sr 520:047

and phase speed cr 520:98. The equilibrium jet is shown in solid white. Positive (negative) contours

are indicated with solid (dashed) lines and the zero contour is indicated with a thick solid line. (b) The

power spectrum of the mean-flow eigenfunction. This jet equilibrium is unstable to nx 5 0 perturba-

tions but stable to nx 5 1 perturbations. The least-stable nx 5 1 eigenfunction is Bloch qy 5 1 with

power at ny 5 3. (c),(d)As in (a) and (b), respectively, but for the least-stablenx 5 1 S3T eigenfunction

of the equilibrium at «/«c 5 5. The jet is stable both to nx 5 0 and nx 5 1 perturbations and the least-

stable nx 5 1 eigenfunction (sr 520:033, cr 522:18) is Bloch qy 5 0 with power at ny 5 2. (e),(f) As

in (a) and (b), respectively, but for the maximally growing nx 5 1 S3T eigenfunction of the jet at

«/«c 5 9. The jet is stable to nx 5 0 perturbations but unstable to nx 5 1 perturbations, and the most-

unstable nx 5 1 eigenfunction (sr 5 0:099, cr 523:81) is Bloch qy 5 1 with power at ny 5 1. (g),(h)As

in (a) and (b), respectively, but for the maximally growing nx 5 1 S3T eigenfunction of a strong

equilibrium jet at «/«c 5 13:65. The most-unstable nx 5 1 eigenfunction (sr 5 0:083, cr 525:99) is

Bloch qy 5 1 with power atny 5 1. In this case,nx 5 0 perturbations aremore unstablewithsr 5 0:324.
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«/«c # 6:80, and when they become unstable, the jet is

still stable to jet (nx 5 0) perturbations. The structures of

the least-damped/fastest-growing eigenfunctions at

various «/«c are shown in Fig. 3. In Figs. 3a and 3b is

shown the least-stable eigenfunction of the weak jet at

«/«c 5 1:2. The eigenfunction is Bloch qy 5 1 with almost

all power at ny 5 3. The phase velocity of this ei-

genfunction is cr 520:98, which is slightly slower than

the Rossby phase speed 21 (i.e., 2b/k2, with b5 10,

kx 5 1, ky 5 3). In Figs. 3c and 3d is shown the least-

stable nx 5 1 mode for the jet at «/«c 5 5, which is Bloch

qy 5 0 with almost all power at ny 5 2 and phase speed

cr 522:18, which corresponds to a slightly modified

Rossby phase speed with effective PV gradient of

beff 5 10:9 instead of the b5 10 of the uniform flow. In

Figs. 3e–h are shown the maximally unstable nx 5 1 ei-

genfunctions for the jets at «/«c 5 9 and «/«c 5 13:65.

Both are Bloch qy 5 1 with almost all power at ny 5 1. At

«/«c 5 9, the mode is trapped in the retrograde jet, a

region of reduced PV gradient, and the structure of this

mode as well as its phase speed corresponds, as shown in

the next section, to that of an external Rossby wave

confined in this equilibrium flow. At «/«c 5 13:65, the

eigenfunction is trapped in the prograde jet, a region of

high PV gradient, and the structure of this mode as well

as its phase speed corresponds to that of an external

Rossby wave in this equilibrium flow.

6. The mechanism destabilizing S3T jets to nx 5 1
nonzonal perturbations

We now examine the stability properties of the ny 5 2

equilibrium jet maintained in S3T at «/«c 5 9. At «/«c 5 9,

the jet is stable to nx 5 0 jet S3T perturbations but un-

stable to nx 5 1 nonzonal perturbations with maximally

growing eigenfunction growth rate sr 5 0:099 and phase

speed cr 523:806, which is retrograde at speed 1.61 with

respect to the minimum velocity of the jet.

Because the jetUe is an S3T equilibrium, the operator

Ae is necessarily stable to perturbation at zonal wave-

numbers that are retained in the perturbation dynamics

(i.e., kx 2 Kf ). Themaximum growth rate of operatorAe

as a function of kx for the jet «/«c 5 9 is shown in Fig. 4a,

with the integer valued wavenumbers that are included

in the S3T dynamics and are responsible for the stabi-

lization of the jet indicated with a circle in this figure.

This equilibrium jet, despite its robust hydrodynamic

stability at all wavenumbers, in both the mean and eddy

equations, and especially its hydrodynamic stability to

nx 5 1 perturbations, is nevertheless S3T unstable at

nx 5 1.

Although it is not formed as a result of a traditional

hydrodynamic instability, this S3T instability is very close

in structure to the least-stable eigenfunction of Ae at

nx 5 1, as it can be seen inFigs. 4c and 4d. The spectrumof

Ae at nx 5 1 is shown in Fig. 4b. The eigenfunctions as-

sociated with this spectrum consist of viscous shear

modes with phase speeds within the flow and a discrete

number of external Rossby waves with phase speeds

retrograde with respect to the minimum velocity of

the flow (cf. Kasahara 1980). In this case, there are

exactly five external Rossby waves with phase speeds

cr 523:70,29:80,25:92,22:33, and 22:37, all decaying

with kxci 520:15,20:16,20:17,20:18, and 20:24, re-

spectively. We identify the S3T nx 5 1 unstable ei-

genfunction, shown in Fig. 4d, which has phase speed

cr 523:81 with S3T destabilization of the least-stable of

the external Rossby waves, shown in Fig. 4c, which has

phase speed cr 523:70. This instability arises byReynolds

stress feedback that exploits the least-damped mode

of Ae, which is already extracting some energy from

the jet through the hydrodynamic instability process,

thereby making it S3T unstable. This feedback process

transforms a mode of the system that while extracting

energy from the mean nevertheless was decaying at a rate

kxci 520:15 into an unstable mode growing at rate

sr 5 0:099. Consistently, note in Fig. 4d that the stream-

function of the S3T eigenfunction is tilting against the

shear, indicative of its gaining energy from the mean flow.

We quantify the energetics of the S3T instability in

order to examine the instability mechanism in more

detail. The contribution to the growth rate of this nx 5 1

eigenfunction from interaction with the mean equilib-

rium jet is

s
10

5
1

2

(A
inv
(Ue)dZ, dZ)1 (dZ,A

inv
(Ue)dZ)

(dZ, dZ)
, (33)

where ( f , g)5
def

2 (2p)22Ð
d2x(1/2)fD21g is the inner

product in energy metric, and

A
inv
(U)52U›

x
2 [b2 (›2yU)]›

x
D21 (34)

is the inviscid part of (10) withV5 0. The contribution to

the growth rate of thenx 5 1 eigenfunction fromReynolds

stress mediated interaction with the small scales is

s
1.

5
1

2

(dZ,R(dC))1 (R(dC), dZ)

(dZ, dZ)
. (35)

The net growth rate of the perturbation nx 5 1 ei-

genfunction is then sr 5s10 1s1. 1s1D, with

s
1D

5
1

2

(A
D
dZ, dZ)1 (dZ,A

D
dZ)

(dZ, dZ)
, (36)

the loss to dissipation, where
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A
D
52r1 nD (37)

is the dissipation part of operator (10).

For the S3T unstable eigenfunction shown in Fig. 4d,

the growth rate sr 5 0:099 arises solely from interaction

with the mean flow, which contributes s10 5 0:303, while

the energy transfer from the small-scale perturbation

field contributes negatively, s1. 520:016, with dissi-

pation accounting for the remainder s1D 520:188. In-

terestingly, this S3T unstablemode is solely supported in

its energetics by induced nonnormal interaction with

the mean jet and loses energy to the Reynolds stress

feedback, which is responsible for the instability. This

remarkable mechanism arises from eddy flux in-

teraction, which transforms damped waves into expo-

nentially growing ones. This is achieved by the

Reynolds stresses altering the tilt of the waves so that

instead of losing energy to the mean jet, as when they

were damped retrograde Rossby waves on the laminar

jet, they tap the energy of the mean jet and grow ex-

ponentially. This novel mechanism destabilizes the

wave even though the direct effect of the Reynolds

stresses is to stabilize it. This mechanism of de-

stabilization differs from that acting in more familiar

S3T instabilities in which jets and waves arise directly

from their interaction with the incoherent eddy field.

FIG. 4. (a) The hydrodynamic stability ofUe at «/«c 5 9. Shown are themaximalmodal growth rates kxci of operator

Ae as a function of kx. Circles indicate the growth rate at the kx retained in the perturbation dynamics; the diamond

indicates the growth rate at kx 5 1. The equilibrium jet is hydrodynamically stable but S3T unstable to nx 5 1 per-

turbation. (b) The growth rates kxci and phase speeds cr of the least-damped eigenvalues of Ae for kx 5 1 pertur-

bations. The shaded area indicates the region min(Ue)# cr #max(Ue). (c),(d) The jet Ue is shown in white. The

streamfunction of the maximally growing S3T nx 5 1 eigenfunction is shown in (d). This S3T eigenfunction arises

from destabilization of the least-dampedmode ofAe with kxci 520:15 and cr 523:70, indicated with the diamond in

(b) and shown in (c). The nx 5 1 S3T instability with sr 5 0:099 and phase speed cr 523:81 is supported in this case

solely by energy transfer from themean flowUe (at the rates10 5 0:303) against the negative energy transfer from the

small-scale perturbation field (at the rate s1. 520:016) and dissipation (at the rate s1D 520:188), with the growth

rate of the S3T instability being sr 5s10 1s1. 1s1D.
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This same mechanism is responsible for the S3T de-

stabilization of the nx 5 1 perturbation to the jet equi-

librium at «/«c 5 13:65. However, at «/«c 5 13:65, the jet

is unstable to both nx 5 0 (with maximum growth rate

sr 5 0:324) and to nx 5 1 nonzonal perturbations (with

maximum growth rate sr 5 0:083 and phase speed

cr 525:99, which is retrograde by 3.18 with respect to

the minimum velocity of the jet). This equilibrium flow

is also hydrodynamically stable at all the zonal wave-

numbers allowed by periodicity (cf. Fig. 5a). This nx 5 1

unstable eigenfunction (cf. Fig. 5d) arises from de-

stabilization of the second-least-damped mode, which is

the damped external Rossbymode indicated in Fig. 5b and

shown in Fig. 5c. The energetics of the instability indicate

that the growth of this nx 5 1 structure arises almost

equally from energy transferred from the mean equilib-

rium jet to the nx 5 1 perturbation (s10 5 0:160) and en-

ergy transferred by the small scales (s1. 5 0:115), while

dissipation accounts for the remainder s1D 520:192.

7. Equilibration of the S3T instabilities of the
equilibrium jet

We next examine equilibration of the nx 5 1 S3T in-

stability at «/«c 5 9 and the equilibration of the S3T in-

stabilities at «/«c 5 13:65, which has both nx 5 0 and

nx 5 1 unstable eigenfunctions.

Consider the energetics of these large scales consisting

of the kx 5 0 and kx 5 1 Fourier components. Denote the

kx 5 0 and kx 5 1 components of vorticity of (23a) as Z0

FIG. 5. (a) The hydrodynamic stability of Ue at «/«c 5 13:65. Shown are the maximal modal growth rates kxci of

operator Ae as a function of kx. Circles indicate the growth rate at the kx retained in the perturbation dynamics; the

diamond indicates the growth rate at kx 5 1. The equilibrium jet is hydrodynamically stable but S3T unstable to both

nx 5 0 and nx 5 1 perturbations. (b) The growth rates kxci and phase speeds cr of the least-damped eigenvalues ofAe

for kx 5 1 perturbations. The shaded area indicates the regionmin(Ue)# cr #max(Ue). (c),(d) The jetUe is shown in

white. The streamfunction of themaximally growing S3T nx 5 1 eigenfunction is shown in (d). This S3T eigenfunction

arises from destabilization of the second-least-damped mode ofAe with kxci 520:165 and cr 526:12, indicated with

a diamond in (b) and shown in (c). The nx 5 1 S3T instability with sr 5 0:083 and cr 525:99 is supported in this case

by both energy transfer from the mean flow Ue (at the rate s10 5 0:160) and energy transfer from the small-scale

perturbation field (at the rate s1. 5 0:115). The dissipation rate is s1D 520:192.
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and Z1 and the corresponding vorticity flux divergence

of the incoherent components as R0 and R1 and with

Ze 5
def

2 ›yU
e the vorticity of the equilibrium zonal jet.

The energetics of the equilibration of the S3T in-

stabilities is examined by first removing the constant flux

to the large scales from the small scales that maintains

the equilibrium flow Ue. For that reason, the vorticity

flux divergence associated with the deviation of the in-

stantaneous covariance fromCe will be considered in the

equilibration process.

Consider first the energetics of the kx 5 1 component of

the large-scale flow. The first contribution to the energy

growth of this component is the energy transferred from

the kx 5 0 component of the flow. This occurs at rate

E
10
5 (A

inv
(U0)Z1,Z1)1 (Z1,A

inv
(U0)Z1), (38)

with Ainv defined in (34) and U0 the total kx 5 0 com-

ponent of the zonal velocity. The second energy source

is energy transferred to kx 5 1 from the small scales (i.e.,

those with jkxj.K), which occurs at rate

E
1.

5 (Z1,R1)1 (R1,Z1), (39)

with R1 5
def

R1(C2Ce) the vorticity flux divergence

produced by covariance C2Ce. Finally, energy is dis-

sipated at the following rate:

E
1D

5 (A
D
Z1,Z1)1 (Z1,A

D
Z1), (40)

with AD defined in (37).

The energy flowing to the kx 5 0 component consists

first of E 01, the energy transfer rate to this component

from the kx 5 1 component, which is equal to 2E 10

(being equal and opposite to the energy transfer rate to

kx 5 1 from the kx 5 0 component), and second of the

energy transferred to kx 5 0 by the small scales, with

contribution to the growth rate

E
0.

5 (Z0,R0)1 (R0,Z0), (41)

with R05
def

R0(C2Ce). Having removed the energy

source sustaining the equilibrium flow, the energy of Z0

is dissipated at rate

E
0D

5 (A
D
(Z0 2Ze),Z0)1 (Z0,A

D
(Z0 2Ze)). (42)

The instantaneous rates of change of the energy of theZ0

and Z1 components are then dE0/dt5E 01 1E 0. 1E 0D

and dE1/dt5E 10 1E 1. 1E 1D. By dividing each term of

dE1/dt with 2(Z1, Z1), we obtain, corresponding to (33),

(35), and (36), the instantaneous growth rates s10, s1., and

s1D, and by dividing dE0/dt with 2(Z0 2Ze, Z0 2Ze), the

growth rates s01, s0., and s0D. As equilibration is

approached, the sumof these growth rates approaches zero,

while the evolution of the growth rates indicates the role of

each energy transfer rate in producing the equilibration.

a. Case 1: nx 5 1 instability at «/«c 5 9

Consider first the equilibration of the nx 5 1 instability

at «/«c 5 9 by first imposing on the jet equilibrium the

most-unstable S3T nx 5 1 eigenfunction at small ampli-

tude, in order to initiate its exponential growth phase.

Evolution of the energy of theZ1 component of the flow

as a function of time, shown in Fig. 6a, confirms the

accuracy of our methods for determining the structure

and the growth rate of the maximally growing S3T ei-

genfunction of the jet equilibrium. The contribution of

each of the growth rates associated with (38)–(40) to the

total normalized energy growth rate of the kx 5 1 com-

ponent of the flow, dE1/dt, is shown in Fig. 6b. As dis-

cussed earlier, the S3T instability is due to the transfer of

energy from the zonal flow, and the equilibration is seen

FIG. 6. (a) Evolution of the disturbance energy dEm of the de-

viation of the large-scale flow from its zonal equilibrium state at

«/«c 5 9 with equilibrium vorticityZe. The S3T equilibrium is initially

perturbed with the unstable nx 5 1 S3T eigenfunction shown in

Fig. 4d. Initially, the deviation grows at the predicted exponential

growth rate of the eigenfunction (dashed), and the equilibration of

this instability produces asymptotically the stationary state shown in

Figs. 7a and 7b comprising a jet with a finite-amplitude embedded

wave. (b) Evolution of the energetics of the kx 5 1 component of the

flow. Shown are the contribution to the instantaneous growth rate of

kx 5 1 by energy transferred from the mean flow s10, from the small

scales s1., and that lost to dissipations1D. Also shown is the resulting

instantaneous growth rate, s1r 5s10 1s1. 1s1D, which necessarily

vanishes as equilibration is approached. The S3T instability is sup-

ported in this case solely from energy transferred to kx 5 1 from U0,

and equilibration is achieved by reducing this transfer.
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to be achieved by reducing the transfer of the energy

from the mean flow to the kx 5 1 component by re-

ducing the tilt of the nonzonal component of the flow.

The Reynolds stress contribution remains approxi-

mately energetically neutral. The flow eventually

equilibrates to a nearly zonal configuration, which is

very close to the initial jet, as shown in Fig. 7c. The

equilibrium state, while nearly zonal, contains an

embedded traveling wave (cf. Figs. 7a and 7b). This

wave propagates westward with phase speed in-

distinguishable from that of the unstable nx 5 1 S3T

eigenfunction, as can be seen in the Hovmöller dia-

gram of C1, shown in Fig. 7d. The PV gradient of the

equilibrated jet b2 ›2yU
0 is everywhere positive, and

the wave propagates in the retrograde part of jet

where the PV gradient is close to uniform. Also, the

structure of the nonzonal component of the equili-

brated flow is very close to the structure of the most-

unstable eigenfunction, as seen by comparing Fig. 4d

with Fig. 7b. This equilibrated state is robustly at-

tracting. When the unstable jet is perturbed with

random high-amplitude perturbations, the unstable

S3T jet is attracted to the same equilibrium. Mixed

S3T equilibria of similar form have been found as

statistical equilibria of the full nonlinear equations

(Bakas and Ioannou 2013a, 2014).

FIG. 7. (a)Mean-flow streamfunctionC at t5 80, and the velocity field of the kx 5 0 and kx 5 1 components of the

equilibrium at «/«c 5 9 resulting from equilibration of the nx 5 1 instability. Also shown in white is U0. The equi-

librium consists of a jet and a traveling wave that has no critical layer in the flow, as it travels retrograde with respect

to the minimum jet velocity. (b) The wave component of the flow C1 and its associated velocity field. The wave

propagates in the retrograde part of the jet where the potential vorticity gradient b2 ›2yU
0 (white) has a small and

nearly constant positive value. (c) Variation of the zonal flow velocityUwith y at equilibrium at different x sections.

Also shown isU0 (dashed line), which is nearly identical to the unstable S3T jetUe. (d) Hovmöller diagram ofC1 at

the location of the minimum ofU0, y5 2:4. The phase velocity of the equilibrated wave is equal to the phase speed

of the most-unstable S3T eigenfunction (dashed line), shown in Fig. 4d.
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b. Case 2: nx 5 1 instability at «/«c 5 13:65

The equilibration of the jet at «/«c 5 13:65 involves

the simultaneous equilibration of two S3T instabilities, of

the powerful nx 5 0 jet instability that grows initially at the

rate sr 5 0:324 and of the weaker nx 5 1 instability that

grows initially at rate sr 5 0:083. We impose on the

equilibrium the most-unstable S3T nx 5 0 and nx 5 1 ei-

genfunctions at small but equal amplitudes in order to

initiate their exponential growth phases. The evolution of

the energy of the Z2Ze component of the flow as a

function of time (cf. Fig. 8a) shows initial growth at the rate

of the faster nx 5 0 instability. The equilibration process

for the nx 5 0 instability is shown in Fig. 8b, and the

equilibration of the nx 5 1 instability in Fig. 8c. The nx 5 0

instability is supported by the transfer of energy to the

kx 5 0 component from the small scales (s0. . 0), as is the

equilibrated jet. The equilibration of this instability pro-

ceeds rapidly and is enforced by reduction of the s0.: that

is, the transfer of energy from the small scales. During the

equilibration process there is a pronounced transient en-

hancement of the transfer rate to the mean flow by the

eddies. This leads to the equilibrated jet shown in Figs. 9a

and 9c, which has 5% greater energy than the original S3T

unstable equilibrium jet. The equilibrated jet is asymmet-

ric with enhanced power at ny 5 1. (In this case, the un-

stable ny 5 2 jet did notmerge with the ny 5 1 jet to form a

jet with a single-jet structure.) During the equilibration

process, s01 is always negative, indicating continual

transfer of mean jet energy supporting the nx 5 1 pertur-

bation. The equilibration of the nx 5 1 wave is slower and

proceeds in this example, in which the jets did not merge,

independently of evolution of the nx 5 0 instability. The

wave is supported by transfer of energy from the small

scales and from transfer of energy from themeanflow. The

former remained unaffected during the equilibration

process, and equilibration is achieved by reduction of the

transfer from the mean flow s10. The PV gradient of the

mean flow, b2 ›2yU
0, shown in Fig. 9b is positive almost

everywhere, and the wave is trapped at the prograde part

of the jet. As in the casewith «/«c 5 9, thewave propagates

at the speed of the S3T eigenfunction (cf. Fig. 9d).

8. Discussion

a. Correspondence between the S3T dynamics (16)
and the projected S3T dynamics (23)

Stability of a two-jet state to jet and wave perturba-

tions in the projected S3T formulation (23) is shown in

Fig. 2. For parameters for which the base state becomes

unstable to nonzonal large-scale perturbations, this base

state transitions to a new equilibrium in which the jet

coexists with a coherent wave. The stability calculation,

its energetics, and equilibration process are studied in

the framework of the projected S3T equations in (23),

which allows a clear separation between the contribution

of the coherent jet interaction and that of the incoherent

eddies to the instability and equilibration processes. This

stability analysis using the projected S3T systemproduces

FIG. 8. Evolution of the disturbance energy dEm associated with

the deviation of the large-scale flow Z2Ze, where Ze is the zonal

equilibrium vorticity, at «/«c 5 13:65. The S3T equilibrium is ini-

tially perturbed with the unstable nx 5 0 and nx 5 1 S3T ei-

genfunctions at small but equal amplitude. The nx 5 0 eigenfunction

grows at sr 5 0:324; the nx 5 1 eigenfunction grows at sr 5 0:083

(both indicated with dashed lines). Energy grows first at the rate of

the nx 5 0 instability, up to t’ 12, at which time the equilibration of

Z0 is established. The equilibration of Z1 is not established until

t’ 60. (b) Evolution of the energetics of Z0. Shown are the con-

tribution to the instantaneous growth rate of Z0 2Ze from energy

transferred from Z1 (s01), from the small scales (s0.), and that lost

to dissipation (s0D). Also shown is the actual instantaneous growth

rate s0r , which vanishes at equilibration. The nx 5 0 S3T instability

is supported by the transfer of energy from the small scales, and

equilibration is achieved rapidly by reducing this transfer. (c) As in

(b), but for Z1. Shown are the transfer rate from Z0 (s10) and from

the small scales (s1.), as well as the energy dissipation rate (s1D).

The nx 5 1 instability is supported by both transfer from Z0 and

from small scales, and the equilibration is established by reducing

the transfer from Z0.
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essentially the same results as were obtained using the

S3T system (16) (cf. Fig. 2 with Figs. 10a,b and

Figs. 3e,f with Figs. 10c,d). The equilibrated states

produced by these two S3T systems are also very

similar (cf. Fig. 11).

b. Reflection of ideal S3T dynamics in QL
simulations

The ideal S3T equilibrium jet and the jet–wave states

that we have obtained are imperfectly reflected in single

realizations of the flow because fluctuations may obscure

the underlying S3T equilibrium (cf. Farrell and Ioannou

2003, 2016). The infinite ensemble ideal incorporated

in the S3T dynamics can be approached in the QL

[governed by (22)] by introducing in the equation for

the coherent flow an ensemble-mean Reynolds stress

obtained from a number of independent integrations

of the QL eddy equations with different forcing

realizations.

Consider, for example, the jet–wave S3T regime at

«/«c 5 9 shown in Fig. 7. The energy of the kx 5 0 com-

ponent of the coherent flow is E0 5 1:3 and of the kx 5 1

component, which is predominantly a ky 5 1 wave, is

E1 5 0:05. In Figs. 12a–l is shown the approach of theQL

dynamics to this ideal S3T equilibrium as a function of

the number of ensemble members Nens, using as

FIG. 9. (a) Mean-flow streamfunctionC at t5 120, and the velocity field of the kx 5 0 and kx 5 1 components of

the equilibrium at «/«c 5 13:65 resulting from equilibration of both the nx 5 0 and nx 5 1 instabilities. Also shown in

white is U0. The equilibrium consists of a jet and a traveling wave that has no critical layer in the flow as it travels

retrograde with respect to allU0. (b) The wave component of the flowC1 and its associated velocity field. The wave

is trapped in the prograde part of the flowwhere the potential vorticity gradient (white) is large. (c) Variation of the

zonal flow velocity U, with y at equilibrium at different x sections. Also shown is U0 (dashed line), which is nearly

identical to the unstable S3T jetUe. The equilibrated jet is asymmetric. (d)Hovmöller diagram ofC1 at the location

of the zero of U0, y5 1:6. The phase velocity of the equilibrated wave is equal to the phase speed of the most-

unstable S3T eigenfunction (dashed line), shown in Fig. 5d.
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diagnostics the structure, indicated by snapshots, of the

coherent flow and the energy spectrum. Convergence

of the energy of the QL coherent flow components to

that of the S3T as Nens increases is shown in Figs. 12m

and 12n. These ensemble QL simulations were per-

formed by introducing the mean Reynolds stress di-

vergence obtained from Nens independent simulations

of (22b), all with the same large-scale flow, obtained

from a single mean QL equation [(22a)]. Convergence

to the S3T state is closely approached withNens 5 10. In

simulations with a smaller number of ensemble mem-

bers, the ensemble QL supports an irregular weaker

ky 5 2 jet and a stronger kx 5 1 coherent flow, which is

concentrated at ky 5 2 rather than at ky 5 1, as pre-

dicted in the S3T (cf. Fig. 12b). As the number of en-

semble members increases, the jet is more coherently

forced, and the ideal S3T kx 5 1 component, which was

previously masked by fluctuations at ky 5 2, is revealed.

Also note that in these QL simulations there are no

eddy–eddy interactions and also no direct stochastic

forcing of the coherent-flow components, and, conse-

quently, their emergence does not result from cascades

but from the structural instability mechanisms revealed

by S3T.

FIG. 10. (a),(b) The stability of the jet equilibria in the S3T formulation (16). The corre-

sponding stability properties of the projected S3T system are shown in Figs. 2a and 2b.

(c) Contour plot of the streamfunction of the most-unstable nonzonal nx 5 1 S3T mean-flow

eigenfunction of the ny 5 2 jet equilibrium at «/«c 5 9 with growth rate sr 5 0:248 and phase

speed cr 523:91. The equilibrium jet is plotted in solid white. Positive (negative) contours are

shown with solid (dashed) lines, and the zero contour is shown with thick solid line. (d) The

energy power spectrumof themean-flow eigenfunction. The jet is stable to nx 5 0 perturbations

but unstable to nx 5 1 perturbations, and themost-unstable nx 5 1 eigenfunction is Bloch qy 5 1

with power at ny 5 1.
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Both S3T and ensemble simulations isolate and

clearly reveal the mechanism by which a portion of the

incoherent turbulence is systematically organized by

large-scale waves to enhance the organizing wave.

However, as in simulation studies revealing this

mechanism at work in baroclinic turbulence (Cai and

Mak 1990; Robinson 1991), the large-scale wave

retains a substantial incoherent component in individ-

ual realizations. This is expected in the strongly tur-

bulent atmosphere, considering that even stationary

waves at planetary scale, which are strongly forced by

topography, are revealed clearly only in seasonal av-

erage ensembles.

c. Reflection of ideal S3T dynamics in nonlinear
simulations

Consider now the reflection of the S3T jet–wave

regime in nonlinear (NL) and ensemble NL simula-

tions. Ensemble simulations of the NL system (21)

were performed by introducing in the mean equations

in (21a), the ensemble average of PK(u
0 � =z0), and

PK(U � =z0 1 u0 � =Z) obtained from Nens independent

simulations of the perturbation NL equations in (21b)

all with the same large-scale flow. The corresponding

results of the ensemble QL simulation (cf. Figs. 13a–d)

differ from those of the ensemble NL simulation. The

nonlinear term (I2PK)[= � (u0z0)] is responsible for the
difference between the NL and QL ensemble simula-

tions, as shown in Fig. 13e–h. In this figure, an en-

semble integration of the NL equations with this term

absent is shown to produce results that are very close

to the QL results.

When all waves with jkxj$ 2 are forced equally, as

in the S3T examples discussed above, the eddy–

eddy interactions are strong in the corresponding

NL, resulting in a substantial modification of the

spectrum of the eddy motions that is not reflected in

S3T. To obtain correspondence, an effective stochas-

tic forcing that parameterizes the absent eddy–

eddy interactions is required in S3T (Constantinou

et al. 2014).

Alternatively, when the term (I2PK)[= � (u0z0)] is

suppressed by choosing low forcing excitation, which

results in weak modification of the spectrum of the in-

coherent component, agreement between NL and QL

simulations is obtained. This is demonstrated in Fig. 14,

in which we show results obtained with an approximate

small-scale isotropic ring forcing:

Q̂(k)5

8>><
>>:

4p

log[(K
f
1 dK

f
)/(K

f
2 dK

f
)]

if jk2K
f
j# dK

f
and jk

x
j. 1

0 if jk2K
f
j. dK

f
or jk

x
j# 1,

(43)

FIG. 11. Comparison of the flows resulting from equilibration of the nx 5 1 S3T instabilities of (a)–(d) the projected S3T system (23) and

(e)–(h) the S3T system (16) at «/«c 5 9. Shown are the ky energy spectrum of (a),(e) themean flow (kx 5 0) and (b),(f) kx 5 1. (c),(g) The kx

energy spectrum of both the coherent flow components jkxj# 1 (circles) and of the incoherent flow components jkxj. 1 (asterisks). (d),(h)

Snapshots of the mean jet (thick line) and contour plot of the streamfunction of the kx 5 1 wave component.
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with Kf 5 10, dKf 5 1, r5 0:01, and n5 0, as in Bakas

and Ioannou (2014). With these parameters the S3T

zonal jet equilibrium is stable to jet perturbations and

unstable to nx 5 1 wave perturbations, and the resulting

equilibrium state in NL has a wave kx 5 1 component in

agreement with S3T predictions. Also the energetics of

the mechanism of destabilization of the external nx 5 1

Rossby wave is partitioned between coherent and in-

coherent sources, consistent with the mechanism de-

scribed in the previous sections.

It could be maintained that because isotropic ring

forcing suppresses eddy–eddy interactions, the agree-

ment between S3T and NL should be expected (cf.

Bakas et al. 2015, their appendix C). This property

FIG. 12. (a)–(l) Structure of the mean flow in ensemble QL simulations as the number of ensemble members Nens increases: (a)–

(d)Nens 5 1, (e)–(h)Nens 5 10 at «/«c 5 9, and (i)–(l) the equilibratedmean flow from the S3T simulation at the same forcing amplitude (cf.

Fig. 7). Shown are the ky energy spectrum of (first column) the mean flow (kx 5 0), (second column) kx 5 1, and (third column) both the

coherent-flow components jkxj# 1 and the incoherent-flow components jkxj. 1. (fourth column) Snapshots of the mean jet (thick line)

and contour plot of the streamfunction of the kx 5 1 wave component. (m) The approach of the energy of the zonal flow E0, obtained in

ensemble QL simulations as the number of ensemble membersNens increases for the case «/«c 5 9. Dashed line marks the S3T prediction.

(n) The approach of the wave component energy E1 to the S3T predictions (dashed line). Convergence is achieved with Nens 5 10. Note

that for small Nens, fluctuations result in enhanced excitation of the kx 5 1 component. Parameters are as in previous simulations.
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follows from the fact that a barotropic fluid excited in an

infinite channel with an isotropic ring forcing with

spectrum Q(k)} d(jkj2Kf ) results in a nonlinear solu-

tion that, by itself, could never give rise to a jet. The

emergence of jets under this forcing can only result from

imposition of a separate perturbation, such as the jet

perturbation that results in the S3T jet instability. As an

example closer to physical reality, consider forcing of the

form (25), which excites the zonal wavenumbers

8# jkxj# 14, modeling baroclinic energy injection, and

with linear damping for the incoherent scales r5 1:5 and

rm 5 0:1 for the coherent scales, with corresponding

e-folding times of 4 and 60 days, respectively. For these

parameters, S3T theory predicts that the 5 jet equilibrium

at «5 0:830 is stable to both jet and nx 5 1 wave pertur-

bations, and consequently S3T theory predicts that QL

andNL simulations should show suppressed energy in the

kx 5 1 coherent wave component. Good agreement be-

tween QL and NL is found in the channel, as shown in

Fig. 15. It is interesting to note that, while the jet in the

NL simulation has the structure predicted by the S3T, its

amplitude is reduced, consistent with a component of the

eddy–eddy interactions acting as diffusion on the

mean jet.

9. Conclusions

Large-scale coherent structures, such as jets,

meandering jets, and waves embedded in jets are char-

acteristic features of turbulence in planetary atmo-

spheres. While conservation of energy and enstrophy in

inviscid 2D turbulence predicts spectral evolution

leading to concentration of energy at large scales, these

considerations cannot predict the phase of the spectral

components and therefore cannot address the central

question of the organization of the energy into specific

structures such as jets and the coherent component of

planetary-scale waves. To study structure formation,

additional aspects of the dynamics beyond conservation

principles must be incorporated in the analysis. For

this purpose, SSD models have been developed and

used to study the formation of coherent structure in

FIG. 13. (a)–(d) QL simulations, (e)–(h) modified NL simulations in which only the term (I2PK)[= � (u0z0)] is removed, and (i)–

(l) unmodified ensemble NL simulations, all with 10 ensemblemembers at «/«c 5 9. Shown are the ky energy spectrum of (first column) the

mean flow kx 5 0, (second column) the kx 5 1 component, and (third column) both the coherent flow components jkxj# 1 and the in-

coherent flow components kx 5 1. (fourth columns) Snapshots of the mean jet (thick line) and contour plot of the streamfunction of the

wave component kx 5 1. Parameters are as in the other simulations. Note that the eddy–eddy interactions in NL lead in this particular

example to an appreciable departure from the QL spectrum of the eddy components (i.e., wavenumbers kx $ 2) [cf. (c) and (k)]. This is

because all the eddy components kx $ 2 are externally strongly forced (the dissipation has an e-folding of 40 days). This figure shows that

the eddy–eddy nonlinearity is the source of the difference between the ensemble QL and the ensemble NL simulations.
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FIG. 14. Comparison among QL and NL simulations with ensemble members (a)–(h) Nens 5 1, (i)–(p) Nens 5 80, and (q)–(t) S3T

simulation. The S3T state in this example predicts a jet component and a kx 5 1 component, and this is reflected in both QL and NL

ensemble simulations, as revealed by the ky energy spectrum of (first column) the respective mean flow (kx 5 0), (second column) the

kx 5 1 component, and (third column) the kx energy spectrum. (fourth column) Snapshots of themean flow (thick line) and contour plot of

the streamfunction of the wave component kx 5 1. Simulations with isotropic forcing at total wavenumber Kf 5 10 [cf. (43)] with

«5 4:23 1024, linear damping coefficient r5 0:01, and n5 0.
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planetary-scale turbulence. In this work, an SSD model

was formulated for the purpose of studying the regime of

coexisting jets and waves. In this model, a separation in

zonal Fourier modes is made by projection in order to

separate a coherent structure equation, in which only

the gravest zonal harmonics are retained, from the

remaining spectrum, which is assumed to be incoherent

and gives rise to the ensemble-mean second-order

FIG. 15. Comparison among QL and NL simulations with ensemble members (a)–(h) Nens 5 1, (i)–(p) Nens 5 80, and (q)–(t) S3T

simulation. The S3T state in this example predicts only a jet component and no kx 5 1 component, and this is reflected in both QL and NL

ensemble simulations, as revealed by the ky energy spectrum of (first column) the respective mean flow (kx 5 0), (second column) the

kx 5 1 component, and (third column) the kx energy spectrum. (fourth column) Snapshots of themean flow (thick line) and contour plot of

the streamfunction of the wave component kx 5 1. Simulations with the anisotropic forcing spectrum (25) at «5 0:830 with zonal

wavenumbers 8# jkxj# 14 being forced.Mean linear damping coefficient is rm 5 0:1, and linear damping coefficient of the incoherent flow

is r5 1:5 and n5 0.
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statistics associated with the incoherent turbulence. This

second-order SSDmodel is closed by a stochastic forcing

parameterization that accounts for both the neglected

nonlinear dynamics of the small scales as well as the

forcingmaintaining the turbulence. The equation for the

large scales retains its nonlinearity and its interaction

through Reynolds stress with the eddies.

In this model, jets form as instabilities and equilibrate

nonlinearly at finite amplitude. A stable mode of the

Rossby wave spectrum associated with these jets is

destabilized for sufficiently strong forcing by interaction

with eddy Reynolds stresses. This destabilization is found

to have, in some cases, the remarkable property of

resulting from destabilization of the retrograde Rossby

wave to mean jet interaction by structural modification of

this damped mode arising from its interaction with the

incoherent turbulence, thereby transforming it into an

unstablemode of themean jet. In other cases, comparable

contributions are found from direct forcing by the

Reynolds stresses, as in S3T instability with projections at

K5 0, and induced jet–wave interaction, as in traditional

hydrodynamic instability. This synergistic interaction

provides a powerful new mechanism for maintaining

planetary waves that will be the subject of further

investigation.
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