PAN

Institute of Oceanology PAS – Centre for Polar Studies KNOW, Poland

Comparing mass, momentum and air-sea CO₂ fluxes for the North Atlantic and the European Arctic

Iwona Wrobel and Jacek Piskozub

10.6 Air-sea interaction at high latitudes – 20th Air-sea Interaction Conference

Oceanflux Greenhouse Gases Evolution

EXETER eri

Outline

- Background
- Motivation
- Momentum fluxes
- Whitecapping
 - Air-sea CO₂ fluxes
 - Conclusion
- Future work

Effect of gas-transfer velocity parameterization choice on air-sea CO₂ fluxes in the NA and the EA – Ocean Science, 12,2591-2616, doi:10.5194/osd-12-2591-2015,2015,

Monthly dynamics of the carbon dioxide exchange in the Artic Ocean as effect of changes in the gas transfer velocity and partial pressure of CO₂ in seawater, during 2010 – Oceanologia, 2016 in review

Background

All input data are 1° x 1° global monthly composites.

Parameter	Dataset (current number of datasets)	Uncertainty	Years
SST	NOAA AVHRR, ESA CCI, GHRSST datasets (4)	yes	1992-2010
U10	ESA GlobWave archive (2+)	yes	1992-2010
Hs	ESA GlobWave archive (1+)	yes	1992-2010
pCO2/fCO2	LDEO Takahashi 2002, LDEO Takahashi 2009, OceanFlux/SOCATv1.5, OceanFlux/SOCATv2 (4)	majority	2000 2010
Rain	GPCP, TRMM, SSMI (4)	yes	1992-2012
Chl-a	ESA GlobColour, ESA Ocean Colour CCI (2)	yes	1997-2011

http://www.oceanflux-ghg.org/content/download/73011/949145/file/Shutler_AirSeaGaz-Brest2013.pdf

support to science element

Motivation

Seasonal sea ice coverage, especially in winter, reduces the exchange of energy, mass and gas between the atmosphere and ocean, and also affects negative for the penetration of sunlight into the ocean.

Arctic is the most changing part of our world

Oceanic whitecaps mark areas of enchance air-sea gas exchange and knowledge of the variation of whitecapping can therefore improve the calculation of gas fluxes between ocean and atmosphere 5

Whitecapping parameterizations

1. Monahan, 1971:

U [m/s]

North Atlantic whitecap coverage [km^2]

West Spitsbergen whitecap coverage [km^2]

Momentum fluxes

1. Wu, 1969:

Month

Global ocean monthly mean momentum flux [TN]

European Arctic monthly mean momentum flux [TN]

North Atlantic monthly mean momentum flux [TN]

West Spitsbergen monthly mean momentum flux [TN]

10

8

12

Millions of CO2 partial pressure measurements are used to create climatologies of net air-sea fluxes. However the flux calculations depend of still uncertain physical formula for gas transfer velocity. **Our motivation** is to check how the choice of kformula affects fluxes in North Atlantic and the European Arcticas as well as compare air-sea CO2 fluxes with Δ pCO2 and wind speed

 $\mathbf{F} = \mathbf{k} * \mathbf{p} \mathbf{C} \mathbf{O}_{2air} - \mathbf{p} \mathbf{C} \mathbf{O}_{2water}$

air-sea CO₂ flux

gas

transfer

velocity

"k"

k / WS	CO ₂ / pCO ₂ w	F/k	F / Δ pCO ₂	F / pCO ₂ w	F / pCO 2A
$r^2 = 0.99$	$r^2 = 0.88$	$r^2 = 0.93$	$r^2 = 0.55$	$r^2 = 0.64$	$r^2 = 0.3$

Some conclusions

- Gas transfer velocity k parameterizations using U³ result in larger net fluxes in all studied areas comparing to the (mostly newer) U² parameterizations.
- The difference between net fluxes in U² and U³ parameterizations is smaller in the North Atlantic and Arctic regions (~ 20%) than globally (~ 30%) contrary to our expectations (stronger winds!).
- Both, the constant direction of the air-sea CO₂ fluxes in all seasons and the typical NA wind speeds of about 9 m/s, accidently make the NA an area where the choic of k parameterizations causes very small flux uncertainy an annual fluxes.
- In monthly scale air-sea CO₂ fluxes are strongly dependent on gast transfer velocity than pCO₂.

Thank you