Exploring Detection of Multilayer Clouds and Retrieval of Their Properties Using Multispectral Satellite Data in an Artificial Neural Network Approach

> Patrick Minnis¹, Gang Hong², Szedung-Sun-Mack², William L. Smith, Jr.¹, Yan Chen², Fu-Lung Chang²

¹NASA Langley Research Center, Hampton, VA ²SSAI, Hampton, VA

Joint 21st AMS Satellite Meteorology, Oceanography and Climatology Conference Madison, WI, 15-19 August 2016

Background

- Multi-layered (ML) cloud systems are common feature around the globe
 - ML systems are sloppy, rarely meet our idealizations
- ML systems affect the satellite retrieval of cloud properties using a single-layer (SL) cloud assumption
 - impact the cloud top height (CTH) retrieval
 - retrieve effective height from VIS-IR methods
 - retrieve top of highest cloud layer in IR methods
 - distort cloud distribution and the atmosphere-surface radiation budget
 - makes direct model comparisons and assimilations more uncertain
- Variety of methods developed to passively detect and retrieve ML clouds

<u>Detection</u>

- Pavolonis & Heidinger (JAM, 2004) BTD(11-12) + VIS
- Wind et al. (JAMC, 2010) 0.94 μm +CO $_2$ slicing
- Joiner et al. (AMT,2010) UV +VIS-IR

Detection & Retrieval

- Lin et al. (JGR, 1998) VIS-IR, MW
- Chang & Li (JGR,2005) VIS-IR, CO2-slicing (assumes low cloud from environs)
- Minnis et al. (2007) VIS-IR, MW ocean only
- Watts et al. (JGR, 2012) 9 channel VIS, IR, CO2 Optimal Estimation
- Chang et al. (2016, in prep) VIS-IR, CO2-slicing (retrieves low cloud directly)

Global Distributions of Multilayer Cloud Occurrence

Aqua MODIS, July 2002

AVHRR, July 1982, 86, 91, & 98

- Patterns and magnitudes similar between the methods, and are reasonable
 H&P compared to several other datasets: reasonable
- Some regional differences due to method and years used

PROBLEM?

• CERES ML identifies ML clouds at 83% compared to 2-layer CALIPSO-CloudSat ice-over-water, upper layer cloud optical depth $\tau > 0.3$

- only 3.2% of all daytime cases Viúdez-Mora et al. (CERES STM, 2016)

• Despite very reasonable monthly averages, CERESML has many false positives when compared 1:1 with CALIPSO-CloudSat profiles mainly due to ice clouds being thicker than the CO2-slicing COD retrieval

- 53% overestimate

• Need to reduce the overestimation by identifying thick ice clouds that are either contiguous or overlapped lower water clouds & improve missed ML pixels

APPROACH

• Identify thick ice clouds with 3-channel daytime Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN-3a) Minnis et al. (JGR, 2016)

- Screen out contiguous clouds using ICODIN-3a results
- Explore use of direct NN method (LANN) to detect ML conditions

Data

- C3M (CALIPSO, CloudSat, CERES, MODIS)
 - CALIPSO V3.3 Vertical Feature Mask and optical depth, τ_{CL}
 - CloudSat CPR CLDCLASS vertical mask & CWC, $\rm r_e$

- $\tau_{\rm CS}$ = 0.75 * $\Sigma ({\rm CWC/r_e}~\rho)~{\rm Q_e}~\Delta z$,

- use only layers where T < 253 K
- compute merged CloudSat-CALIPSO ice optical depth, τ_{CC}
- CERES Edition 4 Cloud Retrievals (revised VISST applied to MODIS)
 - includes multilayered clouds, CERES MCOAT Multilayer Cloud Detection (CEML) Chang et al. (2016)
 - CO2 slicing to estimate cloud emissivity $\varepsilon\,$ & CTP above 600 hPa

 $-\tau_{CO2}$ = 2 * ln(1- ϵ) at nadir

- optical depth & phase from VISST, $\tau_{\rm V}$
- Use only daytime, 60°N 60°S, October 2009
- Compute ICODIN-3a optical depth, $\tau_{NN} = f(LAT, LON, T_{11}, BTD_{1112}, BTD_{6711})$ - only for $\tau_{V} > 4$, ice phase Minnis et al. (JGR, 2016)

Kato et al. (JGR, 2011)

- Ice cloud over water cloud with minimum 1-km separation
 - separate ice cloud layers comprise 1 layer
 - separate water layers = 1 layer
 - ice over water with no 1-km separation = single layer (SL)
 - no ice = SL water (not counted here); no water = SL ice
- "Truth" is CALIPSO-CloudSat profile from C3M product

Multilayer Detection from CALIPSO-CloudSat Not Perfect

• Lowest clouds difficult for CloudSat to identify - some errors likely in truth set

Summary of CERES-ML vs CALIPSO-CloudSat Layering Daytime October 2009

Overall Results, in %, N = 5.1 million with CC ice layer

Classification	CC SL	CC ML
CERES SL	41.5	35.1
CERES ML	11.8	11.6

• Percent correct: 53.1; Percent wrong: 46.9; FAR = 22%

• CERES ML coverage is only half of CC coverage, only ¼ of true coverage

CC ML only, in % of 5.1 million with CC ice layer

Classification	τ(CC) < 0.3	τ(CC) <u>></u> 0.3
CERES SL	16.2	18.9
CERES ML	0.6	11.0

- \bullet Nearly half of missed ML clouds due to low τ of ice layer
 - do not expect CO2 to get many τ < 0.3
- The other half missed due to either upper layer too thick or lower layer too thin

Bivariate Distributions of Passive vs CC Optical Depths, October 2009

 $\tau_{_{NN}}$ less correlated w/ $\tau_{_{CC}}$ for ML clouds, tends to be greater

Screening with ICODIN-3a

- Since CEML assumes it cannot detect ML clouds if upper layer is too thick,
 - reclassify all CEML ML results as SL if, $~~\tau_{_{NN}}$ > $\tau_{_{TT}},~$
 - $\tau_{\mbox{\tiny TT}}\,$ is thick threshold (TT) optical depth

Summary of CERES-ML vs CALIPSO-CloudSat Layering Daytime October 2009

	Classification	CC SL	CC ML	<u>FC %</u> <u>FAR %</u>
No τ_{TT}	CERES SL	41.5	35.1	53 1 22 0
	CERES ML	11.8	11.6	55.1 22.0
τ _{ττ} = 3	CERES SL	48.8	38.1	
	CERES ML	4.4	8.6	57.4 9.4
τ _{ττ} = 4	CERES SL	48.8	37.5	580 95
	CERES ML	5.1	9.2	30.0 5.5
τ _{ττ} = 5	CERES SL	47.5	35.1	57 2 10 8
	CERES ML	5.8	9.7	57.2 10.0
τ _{ττ} = 6	CERES SL	46.8	36.6	500 422
	CERES ML	6.5	10.1	56.9 12.2

- Optimum threshold is τ_{TT} = 4
- Still not satisfactory detection rate
- Need to address missed ML cases

Further Use of the Neural Network Approach Layering Neural Network (LANN)

- ICODIN-3a threshold increased fraction correct and reduced false ML detection - still no help for the larger error: missed ML clouds
- No obvious signal for missed ML clouds vs. SL clouds
 - try applying neural network directly

<u>INPUT</u>

- Lat, Lon, SZA
- 0.65 & 2.13 μm reflectance
- 3.8, 6.7, 8.5, 10.8, 12.8 µm brightness temperatures
- *BTD*₃₈₁₁, *BTD*₃₈₆₇, *BTD*₆₇₁₁, *BTD*₈₅₁₁, *BTD*₁₁₁₂

<u>OUTPUT</u>

• ML or SL

TRAINING and VALIDATION

• 1/5 of data for training, 1/5 for validation

Examples of Applying Layering Neural Network (LANN)

Examples of Applying Layering Neural Network (LANN)

Summary of Neural Net ML vs CALIPSO-CloudSat Layering Daytime October 2009

Overall Results, in % with all CC ice layers

Classification	CC SL	CC ML
CERES SL	49.0	14.0
CERES ML	8.5	28.5

- Percent correct: 77.5; Percent wrong: 22.5; FAR = 17%
- NN ML coverage is 87% CC coverage, but only 2/3 of true coverage

Results in % CC ice layer, for τ_{cc} > 0.3 only

Classification	CC SL	CC ML
CERES SL	45.0	12.0
CERES ML	8.5	34.5

- Percent correct: 79.5; Percent wrong: 20.5; FAR = 15%
 - slightly better than for all ice clouds
- NN ML coverage is 92% of CC coverage, only 2/3 of true coverage

CONCLUSIONS

- Thick ice cloud neural net (ICODIN-3a) increases CERES ML layer FC by 4-5%
 - decreases FAR and total fraction of ML clouds
- Initial test of layering neural network (LANN) very promising
 - increases fraction correct by 25% and even detects ML when τ < 0.3
 FC up to 80%
 - has not been optimized
 - misidentified clouds not yet classified (e.g., τ ranges)

FUTURE

Optimize LANN detection

- assess sensitivity to vertical separation assumption
- determine which channels are truly needed
- perform analyses at other viewing angles (matched GEOsat, VIIRS)
- include 1.38 μm reflectance, NWP analysis data as input
- Test capability of NN method to estimate Z_{upper} , τ_{upper} , etc.
 - if only one parameter can be determined, other approaches (e.g., MCOAT) will be able to retrieve the remaining parameters