Effect of a sea spray layer on ocean surface signal at GPS frequencies Magdalena D. Anguelova and Michael H. Bettenhausen Remote Sensing Division, Naval Research Laboratory, Washington, DC, USA

Background

Sea spray intensifies hurricanes by increasing the enthalpy flux Cooling and evaporation of sea spray change the temperature and humidity in the marine boundary layer Spray-mediated latent and sensible heat fluxes increase the enthalpy

🔆 (jeo Rain rate Enthalpy (lat + sen heat □ Air temperature Humidity

ion of current hurricane remote sensin

Revisit time: mean 7.2 hr (med 2.8

Use of GPS (L band

> High te Multiple G NASA missic

> All weather Low frequen Long wavelen

Adjustive transfer model for *e* **Sea spray reflectivity** r_s from e_s

Input parameters:

➢ GPS freqs F = (L1, L2, L5, Aq) = (1.5754, 1.2276, 1. 1765, 1.4) GHz \succ Friction velocity from $U_{10N} = 10-60$ m s⁻¹ \succ With $H_c = 5-7$ m and $z/H_c = 3-5$, spray layer from 15 to 35 m ightarrow Mean $V_a \cong 1 \text{ m s}^{-1}$ for droplets of 100 – 200 μm > Seawater temperature $T_c = 28 \,^{\circ}\text{C}$ \blacktriangleright Salinity S = 34 psu

 $T_B = e_s T = T_{BU} + T_{BD} + T_{BW}$ $r_{\rm s} = 1 - e_{\rm s}$

Spray layer vertical properties F = 1.57542 GHz (L1 $T = 28 \,^{\circ}\mathrm{C}$ Black: Re[ɛ,]

Spray layer reflectivity

 $U_{10N} = 42 \text{ m s}^{-1}$ for Q(

b) Refractive mixing rule + MW1

U.S.NAVAL

LRESEARCH

LABORATORY

The shape of the $r_s(U_{10N})$ curve strongly depends on the droplet size and its terminal velocity

Conclusions

Sea spray layers vary with conditions

- > Partly transparent
- > Weakly to none reflective
- > Attenuating

Gradual change of spray layer permittivity yields > Impedance matching with sea surface Facilitates absorption close to the surface May diminish reflection of GPS signal

 $\frac{1}{2}$ Skin depth < 5 cm of a spray layer with only Q = 20%Enough to provide a signal at L1 > Thicker spray layers may form in hurricane conditions