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Key points ii

So far, random errors of turbulence moments have been
connected to the existence of an integral scale, as
proposed by Taylor (1935).

The integral scale is (next to) impossible to estimate from
a finite record of (say) 30–60 min. We will present some
evidence that it may not exist at all in some cases.

Still, the random errors can be estimated. They are
somewhat larger than previously thought.

For details, see Dias et al. (2018).
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Origins iii

The Hurst phenomenon is named after H. E. Hurst’s
“Long-Term Storage Capacity of Reservoirs” (Hurst, 1951).
Hurst had been interested in the design of reservoirs for the Nile
River which should be able to meet a certain target demand.
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Main statistics for “R/S” analysis iv

Let x(t, ω) be a stationary, stochastic process. ω is the
“index” of a realization.
At scale ∆ and beginning at time t, we define:

The sample mean: x̃∆(t) = 1
∆

∫ t+∆

t
x(t ′) dt ′,

The sample stdev: s2∆(t) = 1
∆

∫ t+∆

t
[x(t ′)− x̃∆(t)]2 dt ′,

The adjusted range: R∗∆(t) = max
0≤δ≤∆

[δ (x̃δ(t)− x̃∆(t))]

− min
0≤δ≤∆

[δ (x̃δ(t)− x̃∆(t))] ,

The rescaled range: R∗∗∆ (t) = R∗∆(t)
s∆(t) .
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Hurst’s discovery v
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Hurst’s Law:〈
R∗

∆(t)
s∆(t)

〉
= c∆H

H = 0.5 was expected ∗.
Instead, Hurst found
H = 0.72 > 0.50 in geophysical
time series.

∗ Mandelbrot and Wallis (1968): “The Brownian domain of attraction”
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Turbulence data exhibit the Hurst phenomenon! vi

Sutton (1932) (almost 20 years before Hurst!!)
Laushey (1951) (discussion of Hurst’s paper)
Nordin et al. (1972) (lab flumes; Missouri and Mississipi
rivers)
Helland and van Atta (1978) (grid turbulence)

The connection with the integral scale

T =
∫ ∞
0

ρ(η) dη

and its practical uses (random error estimates), however, had
not been made.

9 / 24



Hurst

Introduction

Background

Turbulence
errors and the
Hurst
phenomenon

Conclusions

References

Autocorrelation and Hurst vii

For
ρ(η) ∼ η−q,

the shape of the autocorrelation function determines if the
Hurst phenomenon is present:
exponential decay or 1 < q < 2⇒ “no Hurst” (fast decay with ∆)

0 < q < 1⇒ “Hurst” (slow decay with ∆).
From ρ(η), one can find analytically (Lumley and Panofksy,
1964; Dias et al., 2018):

MSE(x̃∆) = c∆−p,

where:
0 < q < 1: MSE ∼ ∆−q; p = q; p = 2 - 2H ,

q > 1: MSE ∼ ∆−1; p = 1.
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Smoothed fractional Gaussian noise and
Surface-Layer spectra viii
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The Hurst phenomenon is associated with the lowest
frequencies in the spectrum: large errors; it is in practice
impossible to find the power law exponent.
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A power law is at the core of all methods discussed
here ix

MSE(x̃∆) = c∆−p, RMSE(x̃∆) = c−1/2∆−p/2.

With
LPM (Lumley and Panofsky’s Method; Lumley and

Panofksy (1964)) c = 2T Var{x}; p = 1.
FIM (Salesky et al. (2012)’s Filtering Method) fix

p = 1; adjust c for a range of ∆’s.
RFM (Relaxed Filtering Method current work) adjust c

and p for a range of ∆’s; the values of p found
empirically reveal the Hurst phenomenon in
turbulence Surface-Layer data.
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Experimental sites x

Three sets: Tijucas do Sul (short grass), Missal (Itaipu Lake)
and AHATS (Kettleman City, CA)
Quality control:

Spikes.
Physical limits.
Weak turbulence.
Nonstationarity of 1st- and 2nd-order moments.

The last is important because in practice it eliminates the
possibility that the Hurst phenomenon is being caused by
nonstationarity in the data sets.
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Effects of filtering on the Hurst coefficient H xi

Haar Wavelet filtering:
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MSE versus R/S analyses xii

Datasets are of the type

x = u′, x = w ′, x = w ′u′, x = w ′θ′, . . .
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MSE plot at the heart of FIM (fix p = 1) and RFM (let both c
and p vary freely).
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The values of H for 1st-order statistics xiii

Missal data (left) and AHATS data (right)
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Overall effect on error estimates xiv

Tijucas data: RMSE(u) (m s−1)
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The Hurst phenomenon is outside the scope of
Monin-Obukhov Similarity Theory xv

Hp versus Obukhov’s stability variable ζ, Itaipu Lake, u′ data.
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(Very long range, very low frequencies)
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Conclusions xvi

Hurst’s phenomenon is ripe in surface-layer turbulence.
In real turbulence, spectra, autocorrelation functions and
structure functions devised to “see” inertial-range behavior
have difficulty “seeing” Hurst’s phenomenon.
Taylor’s integral time scale T often does not exist in
surface-layer turbulence.
This does not prevent error estimates from being possible,
but errors may be somewhat larger than we thought,
because of the lower decay of RMSE(x̃∆) with ∆.
HR (from R/S) and Hp (from MSE) are different
estimators (they don’t yield the same H).
The Hurst phenomenon is (very likely) outside the scope
of Monin-Obukhov Similarity Theory. This is expected,
due to the very long-range nature of Hurst’s phenomenon.
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Many thanks

. . . for your attention!
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