

Key Parameters for the Life Cycle of Nocturnal Radiation Fog Results from a Comprehensive Large-Eddy Simulation Study

Björn Maronga^{1,2} Fred C. Bosveld³ Johannes Schwenkel¹ - Poster attendant: <u>Dmitrii Mironov⁴</u>

¹ Institute of Meteorology and Climatology, Leibniz Universität Hannover, Germany, ² Geophysical Institute, University of Bergen, Norway, ³ Royal Netherlands Meteorological Institute, Netherlands, ⁴ German Meteorological Service, Germany

2 LES Model 1 Motivation Fog can have a high impact on the economy and personal safety (Bergot, 2013). Gultepe et al. (2009) estimated the total General economic loss that is associated with fog events on aviation, marine and land transportation to be comparable to those of winter ► The LES model PALM (Maronga et al., 2015). storms. There is thus increasing demand in precise fog forecasting (e.g. for airports, see e.g. Bergot, 2016). Despite the ► Finite differences, Cartesian grid. improvements in numerical weather prediction (NWP) models over the last years, accurate forecasting of fog is still challenging Cyclic lateral boundary conditions. (e.g. Wilkinson et al., 2013; Steeneveld et al., 2015). The main reason is fog's considerable variability in space and time as a result ▶ 1D model for precursor runs. of the nonlinear interaction between several processes, such as radiation, turbulent mixing, cloud microphysics, and energy transfer **Cloud microphysics** in the atmosphere-surface-soil continuum (e.g. Haeffelin et al., 2010; Holtslag et al., 2010). Two-moment liquid phase (Seifert and Beheng, 2001; 2006) Constant cloud droplet number concentration This study investigates the role of turbulence in nocturnal radiation fog and its interaction with microphysics, Land surface scheme radiation, and the vegetation-surface-soil continuum in order to derive key parameters for the accurate

TESSEL based land surface scheme

 $q_{\rm l,max} = 0.41 \ {\rm g \ kg^{-1}}$

- Energy budget solver for skin temperature, 4-layer soil model
- Radiation scheme: RRTMG (1D vertical), coupled to PALM

3 Fog case and simulation setup

4 The Cabauw case: fog life cycle

simulation and prediction of fog. A deep fog case as observed at Cabauw/CESAR, Netherlands, 23 March 2011

simulations. This poster gives an overview of the results that were published in Maronga and Bosveld (2017).

(see Boers et al., 2013) is used for validation and as reference for a comprehensive set of large-eddy

Observed fog at Cabauw

- Midnight: $u_g \approx 5.5 \,\mathrm{m \ s^{-1}}$, 6 K near-surface inversion.
- Fog formation: 0000 UTC. Deepening: 10-140 m between 0300-0600 UTC.
- Dissipation: 0800 UTC. Clear-sky conditions: 0900 UTC.

General setup

- \blacktriangleright Model domain: 768 m \times 768 m \times 384 m.
- Grid spacing: $\Delta = 0.5 4.0 \,\mathrm{m}$, equidistant.
- Cloud droplet concentration $N_{\rm c} = 150 \, {\rm cm}^{-3}$

Cabauw simulations

Cabauw runs	Feature
CAB (reference)	$\Delta = 1 \mathrm{m}$
GRID_40	$\Delta = 4 \mathrm{m}$
GRID_20	$\Delta = 2 \mathrm{m}$
GRID_05	$\Delta = 0.5\mathrm{m}$
ADV_PT_05	cold-air advection ($-0.05 \mathrm{K} \mathrm{h}^{-1}$)
ADV_PT_10	cold-air advection $(-0.1 \mathrm{K} \mathrm{h}^{-1})$
MEA_PT	colder $d\theta$: -0.1 K
MEA_PT_+	warmer $d\theta$: +0.1 K

Development of temperature and humidity

Stable boundary layer at 0000 UTC

5 Effect of grid spacing

- Development of convective (top-down) convective layer at 0300 UTC
- Simulated fog remains colder and shallower than observed

▶ Formation (+)

280

- ► Maximum (○)
- ▶ Lifting (×)
 ▶ Dissipation (□)

 q_{1} (g kg⁻¹)

0.39

0.36

0.33

0.30

0.27

0.24

0.21

0.18

0.15

0.12

0.09

0.06

0.03

0.00

References

- Bergot, T. (2013): Small-scale structure of radiation fog: a large-eddy simulation study. Quart. J. R. Met. Soc.. 139, p. 1099–1112. doi:10.1002/qj.2051.
- Bergot, T. (2016): Large-eddy simulation study of the dissipation of radiation fog. Q. J. R. Meteorol. Soc.. doi:10.1002/qj.2706.
- Boers, R., Baltink, H. K., Hemink, H. J., Bosveld, F. C. (2013): Ground-Based Observations and Modeling of the Visibility and Radar Reflectivity in a Radiation Fog Layer. J. Atmos. Oceanic Technol.. 30, p. 288–300. doi:10.1175/JTECH-D-12-00081.1.
- Gultepe, I., Pearson, G., Coauthors (2009): The Fog Remote Sensing and Modeling Field Project. Bull. Amer. Meteorol. Soc.. 90, p. 341–359. doi:10.1175/2008BAMS2354.1.
- Haeffelin, M., Bergot, T., Coauthors (2010): PARISFOG Shedding New Light on Fog Physical Processes. Bull. Amer. Met. Soc.. 91, p. 767–783. doi:10.1175/2009BAMS2671.1.
- Holtslag, M. C., Steeneveld, G. J., Holtslag, A. A. M. (2010): Fog

forecasting; "old fashioned" semi-empirical methods from radio sounding observations versus "modern" numerical models. Proc. 5th International Conference on Fog Collection and Dew.

Maronga, B., Bosveld, F. C. (2017): Key parameters for the life cycle of nocturnal radiation fog: a comprehensive large-eddy simulation study. Quart. J. Roy. Meteor. Soc.. 143, p. 2463–2480. doi:10.1002/qj.3100.

Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F.,
Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring,
M., Raasch, S. (2015): The Parallelized Large-Eddy Simulation Model
(PALM) version 4.0 for atmospheric and oceanic flows: model formulation,
recent developments, and future perspectives. Geosci. Model Dev.. 8, p.
2515–2551. doi:10.5194/gmd-8-2515-2015.

- Seifert, A., Beheng, K. D. (2001): A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res. 59, p. 265–281.
- Seifert, A., Beheng, K. D. (2006): A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys.. 92, p. 45–66.

Steeneveld, G. J., Ronda, R. J., Holtslag, A. A. M. (2015): The Challenge of Forecasting the Onset and Development of Radiation Fog Using Mesoscale Atmospheric Models. Boundary-Layer Meteorol.. 154, p. 265–289. doi:10.1007/s10546-014-9973-8.

Wilkinson, J. M., Porson, A. N. F., Coauthors (2013): Improved microphysical parametrization of drizzle and fog for operational forecasting using the Met Office Unified Model. Quart. J. R. Met. Soc.. 139, p. 488–500. doi:10.1002/qj.1975.

CAB	0200 U I C	0550 U I C	0840 U I C	1040 U I C	REF	0105 UTC	0550 U I C	0850 U T C	1120 UTC
Advection				Turbulent mixing (dynamic stability)					
ADV_PT_05	-35 min	0 min	$+15{ m min}$	+45 min	DYN_02	+30 min	-15 min	$+15{ m min}$	$+10{ m min}$
ADV_PT_10	-55 min	+35 min	+30 min	+80 min	DYN_03	+45 min	0 min	$+5 \min$	$+5 \min$
Measurement uncertainty				DYN_{05}	+30 min	$+5{ m min}$	-5 min	$+5 \min$	
MEA_PT	-40 min	-25 min	$+5 \min$	$+5 \min$	DYN_06	+85 min	$+10{ m min}$	-10 min	$+5 \min$
MEA_PT_+	+30 min	$+10{ m min}$	0 min	-5 min	Initial state				
MEA_QV	$+105{ m min}$	+35 min	-5 min	-35 min	INI_ST2	-35 min	0 min	$+10{ m min}$	$+10{ m min}$
$MEA_{QV_{-}}+$	-105 min	$+25 \min$	$+15{ m min}$	+25 min	INI_ST_+2	+90 min	0 min	-10 min	-10 min
Cloud droplet number concentration				INI_SQ_20	0 min	0 min	-70 min	-175 min	
NC_100	0 min	$+5 \min$	-10 min	-25 min	INI_SQ_35	0 min	0 min	-30 min	-120 min
NC_200	0 min	0 min	$+15{ m min}$	+20 min					

The following sensitivities were found concerning the time marks formation, maximum, lifting and dissipation:

- Advection: all time marks
- Measurements: formation, maximum, dissipation
- Droplet number: dissipation

The PALM model system: http://palm-model.org, Mail: maronga@muk.uni-hannover.de.

- Turbulent mixing: formation
- Soil temperature: formation
- Soil moisture: lifting and dissipation

the impact of different nucleation and condensation parameterizations on the fog life cycle?

- Combine LES with Lagrangian cloud model: fog droplet spectra in 4D and explicit aerosol activation
- What is the effect of fog on the daytime boundary layer?
- How do surface heterogeneities affect the fog life cycle?