Do wind turbines pose roll hazards to light aircraft?
Jessica M. Tomaszewski1, Julie K. Lundquist1,2, Matthew J. Churchfield2, and Patrick J. Moriarty2

1Department of Atmospheric and Oceanic Sciences, University of Colorado – Boulder; 2National Renewable Energy Laboratory
Contact: Jessica.Tomaszewski@colorado.edu

Introduction
Recent general aviation (GA) airport data (OurAirports; FAA, 2016) and wind turbine data (USGS, 2014) show that:
- There are 48,000+ turbines total in the United States (below)
- 40% are within 10 km of a small airport; 5% are within 5 km

Wind turbines create wakes (below) characterized by wind speed deficit, increased turbulence downwind
Rolling moment = torque about x-axis, caused by turbulence in wind field

Motivation
Concerns for wake-generated roll hazards have yielded conflicting estimates on the extent of wakes’ hazardous influence:
- KU study suggests that wind turbine wakes pose a significant roll hazard to GA aircraft as far as 2.84 miles downwind [1]
- CAA study indicates that the wake poses no roll hazards for aircraft 5 rotor diameters (0.25 miles) downwind [2]

The KU findings have been used in multiple states to limit wind energy development:
- Pratt wind farm project in Kansas was relocated further away from the airport [3]
- Used as a warning to aviators in Virginia [4]

Simulations
Model used: Simulator for Wind Farm Applications (SOWFA)
- Based on OpenFOAM, a library of LES solvers
- Turbine introduced into model: DOE GE 1.5 MW SLE
- Rotor diameter (D) = 77 m
- Hub height = 80 m
- Widely deployed turbine worldwide

Conditions simulated:
- Neutral, 7 m/s
- Stable, 9 m/s

Resolution: 1.25 m

Data Analysis
We represent a typical GA aircraft (Cessna 172) as a line in LES data
- Wingspan ≈ 10 m
- Planform area (S) = 16 m²
- Aspect ratio (β) = 7

At each point determine:
1. Angle of attack
 \(\alpha \approx \tan^{-1} \frac{w}{V} \)
2. Lift coefficient
 \(C_l = 2\pi\alpha + C_{10} \)
3. Lift
 \(L_i = 0.5C_l\rho|V|^2A \)

We define 540 flight tracks in down-wake and cross-wake orientations through the LES data to sample the wind vectors and make the above calculations.

\(C_{roll} \) is calculated for all 540 aircraft transects for 100 s, yielding 17,688,000 roll hazard calculations:
- \(|C_{roll}| < 0.1 \) = “low”
- \(0.1 < |C_{roll}| < 0.28 \) = “medium”
- \(|C_{roll}| > 0.28 \) = “high”

Conclusions
1. As expected, aircraft within a turbine wake experience higher rolling moments than those outside the wake
2. However, >99.99% of rolling moment instances are classified as “low” roll hazards in both stabilities and flight orientations
3. The largest rolling moments occur most frequently about 5D downwind in both stability conditions

Future work could include: higher wind speeds, multiple turbines, experimental validation with lidar, RPAS

References

Acknowledgments
This work was supported by a seed grant from Renewable and Sustainable Energy Institute (RASEI) with cooperation from the National Renewable Energy Laboratory (NREL). Computing resources for hazard calculations were provided by the Extreme Science and Engineering Discovery Environment (XSEDE), supported by National Science Foundation Grant No. ACI-1053575. JMT’s work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1144083.