
1B.3 TURBULENCE STRUCTURE AND MIXING IN STRONGLY STABLE

BOUNDARY-LAYER FLOWS OVER THERMALLY HETEROGENEOUS SURFACES

Dmitrii Mironov1∗and Peter Sullivan2

1 German Weather Service, Offenbach am Main, Germany
2 National Center for Atmospheric Research, Boulder, CO, USA

1. INTRODUCTION

Representation of stably stratified planetary boundary

layer (SBL) presents a serious problem for numerical

weather prediction, climate modeling, and related appli-

cations. Model errors associated with the SBL regimes

characterized by relatively weak turbulence and low mix-

ing intensity are often substantial, and it is still largely

unclear how the trouble can be cured. Many SBL fea-

tures are poorly understood (see, e.g., Mahrt, 2014, for

discussion). One particularly challenging issue is the

strongly stable boundary layer over a thermally heteroge-

neous surface. In the present study, we use direct numer-

ical simulation (DNS) to gain some insight into the ef-

fect of surface thermal heterogeneity on the structure and

transport properties of strongly stable boundary layer.

Mironov and Sullivan (2016, hereafter MS16) used

large-eddy simulation (LES) to examine the mean and

turbulence structure of the atmospheric SBL over ther-

mally homogeneous and thermally heterogeneous sur-

faces. The LES data were used to perform a compara-

tive analysis of second-moment budgets and mixing in-

tensity in the homogeneous and heterogeneous SBLs. A

physically plausible explanation of the enhanced mixing

in the heterogeneous SBL was found, and possible ways

to parameterize the heterogeneity effects in atmospheric

models were discussed. It should be emphasized that the

results of MS16 are pertinent to weakly-to-moderately

stable boundary layers characterized by continuous and

rather vigorous turbulence. The structure and mixing in-

tensity in strongly stable boundary layers characterized

by weak and often intermittent turbulence are still largely

unknown and need to be investigated. The present study

attempts to make a step forward in this direction.

Among other questions, the following outstanding

questions should be addressed. (i) If turbulence dies out

over a homogeneous surface due to strong stability, does

it survive over a heterogeneous surface? (ii) If turbu-

lence survives, how anisotropic does it appear to be and

does it generate appreciable vertical fluxes of momen-
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tum and scalars? (iii) What are the particular features

of the second-moment budgets in strongly stable regime,

and what is the role of the pressure-scrambling and of the

third-order transport in maintaining the variance and flux

budgets? The present contribution addresses the issues

(i) and (ii). Analysis of the second-moment budgets is

left for future studies.

The present study is not aimed at simulating the real-

world geophysical (e.g., atmospheric or oceanic) flows.

Instead, we focus on physical processes at work in

strongly stratified boundary-layer flows, namely, on the

effect of surface thermal heterogeneity on the structure

and transport properties of turbulence. To this end, we

use an idealized plane Couette flow set-up (a physical

analogue of our numerical configuration is discussed in

the next section). The flow is driven by a fixed velocity of

the upper surface, while the lower surface is at rest. The

stable density stratification is imposed by a fixed tem-

perature difference between the upper and lower bound-

aries. The temperature at the horizontal upper and lower

surfaces is either homogeneous or varies sinusoidally in

the streamwise direction, while the horizontal-mean tem-

perature is the same in the homogeneous and heteroge-

neous cases. The DNS data are used to compute the

vertical profiles of mean fields and of the second-order

and (some) third-order statistical moments of turbulence,

and to analyze the structure and mixing intensity of the

flows over thermally homogeneous and thermally hetero-

geneous surfaces.

The plane Couette flow configuration has often been

used to study various aspects of neutral, convective and

stably stratified turbulence (see, e.g., Komminaho et al.,

1996; Papavassiliou and Hanratty, 1997; Sullivan et al.,

2000; Sullivan and McWilliams, 2002; Avsarkisov et al.,

2014; Richter and Sullivan, 2014; Deusebio et al., 2015,

and references therein). To the best of the authors’

knowledge, DNS of Couette flows over thermally het-

erogeneous surfaces has not been performed so far.

The flow configuration and governing equations are

described in section 2. Details of the simulations per-

formed are given in section 3. Simulation results are dis-

cussed in section 4. Conclusions are presented in sec-

tion 5.



2. FLOW CONFIGURATION AND GOVERNING

EQUATIONS

We consider a three-dimensional, stably stratified, plane

Couette flow. The fluid depth is H, the lower boundary

is at rest, and the upper boundary moves with a constant

velocity Uu. Stable buoyancy stratification is maintained

by a temperature difference ∆θ= θu−θl between the up-

per and lower boundaries. The physical characteristics

of the fluid are the kinematic molecular viscosity ν, the

molecular temperature conductivity κ, and the buoyancy

parameter βi =−giαT , where gi is the acceleration due to

gravity and αT is the thermal expansion coefficient. Both

ν and κ are taken to be constant in our simulations. The

Boussinesq approximation is used, and the simplest lin-

ear equation of state is utilized, ρ = ρr [1−αT (θ−θr)],
where ρ is the fluid density, ρr is the constant reference

density, θ is the potential temperature (for the sake of

brevity, it will also be referred to as simply “tempera-

ture”), and θr is the constant reference potential temper-

ature. Both αT and βi are constant.

The governing equations given below contain three di-

mensionless parameters. These are the Reynolds num-

ber,

Re =
UuH

ν
, (1)

the Prandtl number,

Pr =
ν

κ
, (2)

and the Richardson number,

Ri =
g3HαT ∆θ

U2
u

, (3)

where g3 is the magnitude of the vector of gravity [in the

co-ordinate system used here, gi = (0,0,−g3)].
A real-world flow configuration closely analogous to

our numerical configuration can hardly be found among

geophysical flows. A conceivable physical analogue of

our numerical set-up is a laboratory tank filled with the

fresh water at room temperature. Using H = 0.25 m,

Uu = 0.04 m s−1 and ν = 10−6 m2 s−1 (the value for

fresh water at 20◦C), we obtain Re = 104. Using a

quadratic fresh-water equation of state (Mironov et al.,

2010), ρ= ρr

[
1−

1

2
aT (θ−θr)

2

]
, where aT = 1.6509×

10−5 K−2 is an empirical coefficient and θr = 277.13 K

is the temperature of maximum density of fresh water,

we find that a temperature difference between the upper

and lover horizontal boundaries of about 1 K is needed

to obtain Ri = 0.5. To arrive at this estimate, we re-

cast the Richardson number in terms of buoyancy differ-

ence between the upper and lover horizontal boundaries,

Ri = H∆b/U2
u , where b = g3 (ρr −ρ)/ρr, and use g3 =

9.81 m s−1, θl = 292.65 K (19.5◦C), and θu = 293.65 K

(20.5◦C). Note that the Prandtl number is about 7 for

fresh water (at 20◦C), which is considerably higher than

the value of Pr = 1 that we adopt for our numerical fluid.

The flow variables are made dimensionless with the

length scale H, velocity scale Uu, time scale H/Uu and

temperature scale ∆θ, and dimensionless temperature

θ̂ = (θ−θl)/(θu −θl) is introduced. The governing

equations written in dimensionless form are (in order to

simplify the notation, we omit hats over dimensionless

variables)
(

∂

∂t
+uk

∂

∂xk

)
ui =−

∂p

∂xi

+δi3Riθ+
1

Re

∂2ui

∂x2
k

, (4)

∂ui

∂xi

= 0, (5)

(
∂

∂t
+ui

∂

∂xi

)
θ =

1

PrRe

∂2θ

∂x2
i

. (6)

Here, t is time, xi are the right-hand Cartesian co-

ordinates, ui are the velocity components, and p is the

kinematic pressure (deviation of pressure from the hy-

drostatically balanced reference pressure divided by the

constant reference density). The Einstein summation

convention for repeated indices is adopted. The origin

of the co-ordinate system is at the lower boundary, the x3

axis is aligned with the vector of gravity and is positive

upward, and the x1 axis is in the direction of Uu. Note

that, since the vertical-velocity equation in our simula-

tions is solved for the fluctuation of u3 about its horizon-

tal mean, θr can be set equal to θl so that the dimension-

less reference temperature (θr −θl)/(θu −θl) drops out

from the buoyancy term on the right-hand side (r.h.s.) of

Eq. (4).

Periodic boundary conditions for ui and θ are applied

in both x1 and x2 horizontal directions. At the horizontal

boundaries, the following Dirichlet boundary conditions

are used:

u1 = 0, u2 = u3 = 0 at x3 = 0,
u1 = 1, u2 = u3 = 0 at x3 = 1,

(7)

and

θ = δθsin [2πnx1/L1] at x3 = 0,
θ = 1+δθsin [2πn(x1 −Uut)/L1] at x3 = 1,

(8)

where L1 is the domain size in the x1 direction, δθ is the

(dimensionless) amplitude of the temperature variations

at the upper and lower surfaces, and n is the number of

cold and warm stripes (the number of surface temper-

ature waves). In the homogeneous case, δθ = 0. In the

heterogeneous cases, δθ> 0 but the horizontal-mean sur-

face temperature is the same as in the homogeneous case.



3. SIMULATIONS PERFORMED

The DNS code used in the present study is described

in detail in Sullivan et al. (2000) and Sullivan and

McWilliams (2002). A description of the code is not re-

peated here; readers are referred to the above papers.

One simulation with homogeneous lower and upper

surfaces (HOM) and three simulations with heteroge-

neous surfaces (HET) are performed. In all simulated

cases, the fixed values of Pr= 1, Re= 104, and Ri= 0.25

are used. The number of grid points is 512, 512, and

256 the streamwise x1, spanwise x2, and vertical x3 di-

rections, respectively. The domain size in the vertical

direction is 1, and the domain size in both horizontal di-

rections is 8. The number of cold and warm stripes (the

number of surface temperature waves) in the heteroge-

neous cases is 4. Governing parameters of the simula-

tions performed are summarized in Table 1.

Table 1: Governing parameters of simulated cases.

Case δθ Tt Ts Reτ Q∗×105

HOM 0.00 715 15 104.63 −10.0
HET025 0.25 1166 166 100.50 −9.80

HET050 0.50 1392 392 107.77 −7.45

HET075 0.75 1380 380 112.16 −5.12

In Table 1, Tt is the total length of the simulation in

dimensionless time units (recall that time is made dimen-

sionless with H/Uu), Ts is the length of the sampling pe-

riod (at the end of the run), Reτ = u∗H/ν is the Reynolds

number based on the surface friction velocity u∗, and Q∗

is the surface temperature flux. The surface friction ve-

locity and the two Reynolds numbers are related through

u∗ = Re−1Reτ.

The homogeneous simulation starts with a fully devel-

oped, stationary, neutral Couette flow. The stable buoy-

ancy stratification is established by gradually (linearly in

time) increasing the Richardson number over 100 dimen-

sionless time units from Ri = 0 to Ri = 0.25. The sim-

ulations are then continued until turbulence dies out and

the laminar Couette flow regime is achieved. The value

of Ri = 0.25 proves to be sufficient to fully quench tur-

bulence in the homogeneous case.

The heterogeneous flows start with Ri = 0, δθ = 0,

and the linear velocity profile. In order to assist initial

turbulence spin-up, velocity and temperature fluctuations

taken from the neutral turbulent Couette flow are added

in the lower 1/4 and the upper 1/4 of the computational

domain. The Richardson number is increased (linearly in

time) from Ri = 0 to Ri = 0.25 over 10 time units, while

the temperature difference δθ is increased from zero to

its value given in Table 1 over 100 time units. The simu-

lations are then continued over many time units required

to achieve a quasi-stationary flow regime over heteroge-

neous surfaces, and then continued further in the quasi-

stationary regime over the sampling period. The number

of samples differs between the cases, but the sampling

period in the heterogeneous cases covers more than 150

time units (see Table 1).

The DNS data are averaged over horizontal planes

and the resulting profiles are then averaged over several

thousand time steps. These horizontal and time mean

quantities are treated as approximations to the ensemble-

mean quantities. In what follows, an overbar denotes a

horizontal-mean quantity, a prime denotes a fluctuation

about a horizontal mean, and the angle brackets denote

the quantities averaged over time.

4. RESULTS

4.1 MEAN FIELDS

Vertical profiles of the streamwise mean-velocity com-

ponent U = 〈u〉 and of mean temperature Θ =
〈
θ
〉

are

shown in Fig. 1. The spanwise mean-velocity component

is negligibly small in all simulations and is not shown. In

the homogeneous case, the profiles of both U and Θ are

linear, corresponding to the laminar solution of the plane

Couette problem. Although we give turbulence a good

chance to survive by starting the homogeneous simula-

tion with a vigorously turbulent neutral flow and grad-

ually increasing the Richardson number, the buoyancy

stratification at Ri = 0.25 is strong enough to fully extin-

guish turbulence.

As seen from Fig. 1, the mean velocity is only slightly

affected by the surface thermal heterogeneity. The situa-

tion is different for the mean temperature. As the ampli-

tude δθ of surface temperature variations increases, the

flow becomes increasingly mixed with respect to Θ (the

associated increase of the temperature gradient near the

horizontal boundaries is due to the fact that the temper-

ature at the boundaries is fixed). Note that the effect is

appreciable at relatively large values of δθ in the simula-

tions HET050 and HET075. In the simulation HET025,

δθ is relatively small, the effect of surface heterogene-

ity is weak, and the temperature profile remains almost

linear.

Figure 2 shows the profiles of the streamwise mean-

velocity component in wall units (using the kinematic

molecular viscosity and the surface friction velocity to

make the profiles dimensionless), i.e., U+ = URe−1
τ Re

as function of x+3 = x3Reτ. The flow in the close vicinity

of the boundaries is well resolved in our simulations. The
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Figure 1: (left) Streamwise component of mean velocity, and (right) mean temperature from simulations HET025

(blue), HET050 (green), and HET075 (red). Thin black dotted line shows the laminar solution.

first grid point above the surface is at x+3 ≈ 0.2. A larger

grid spacing may be used in neutral Couette flows, but

the resolution cannot be compromised in our simulations

because of the need to resolve large temperature gradi-

ents in the thermal boundary layers close to the walls.

It is these temperature gradients that drive turbulence in

heterogeneous simulations. Test runs with lower resolu-

tion in the vertical direction yield the results (not shown)

that are quantitatively and even qualitatively different

from the results of high-resolution simulations and are

not trustworthy. Note in passing that the domain size in

horizontal directions cannot be compromised either be-

cause of the need to simulate large-scale elongated struc-

tures characteristic of plane Couette flows (e.g., Kom-

minaho et al., 1996; Papavassiliou and Hanratty, 1997;

Avsarkisov et al., 2014).

Black solid and dashed lines in Fig. 2 show, respec-

tively, the streamwise velocity from the neutral Couette-

flow simulation (the DNS data are from the run used to

initialize the stably stratified HOM case) and the loga-

rithmic velocity profile U+ =
1

κ
ln
(
x+3

)
+B0, where κ =

0.4 and B0 = 5.0 are dimensionless constants. The neural

velocity profile closely follows the log-layer scaling for

the height range 20 ≤ x+3 ≤ 200. This is not the case for

the flows over thermally heterogeneous surfaces, where

the velocity profiles reveal no log-layer scaling. Green

dot-dashed curve in Fig. 2 shows the Monin-Obukhov

log-linear velocity profile U+ =
1

κ
ln
(
x+3

)
+B0+

Cu

κ

x+3
L+

,

where Cu = 5 is a dimensionless constant, and L+ =

−
(
κQ+

∗ Re2Ri
)−1

Re3
τ and Q+

∗ = Q∗Re−1
τ Re are, respec-

tively, the dimensionless Obukhov length and the dimen-

sionless surface temperature flux in wall units. The curve

is computed using the governing parameters of the sim-

ulation HET050. As seen from the figure, the U+ pro-

file in the case HET050 (green solid curve) does not

show similarity to the log-linear profile. This is not sur-

prising, however, considering that the Monin-Obukhov

surface-layer flux-profile relationships are only applica-

ble to turbulent layers over homogeneous surfaces. For

thermally heterogenous surfaces, different flux-profile

relationships are required.

4.2 SECOND-ORDER MOMENTS

Figure 3 shows vertical profiles of the turbulence kinetic

energy TKE=
1

2

〈
u′2i

〉
. The TKE increases with the in-

creasing amplitude of the surface temperature variations.

The level of turbulence is very low in the case HET025,

where δθ = 0.25 proves to be too small to make the flow

vigorously turbulent.

Velocity variances uu =
〈

u′21

〉
(streamwise), vv =

〈
u′22

〉
(spanwise), and ww =

〈
u′23

〉
(vertical) are shown

in Fig. 4. In the cases HET050 and HET075, both the
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Figure 2: Streamwise mean-velocity component plotted in

wall units. Solid curves snow the profiles from simulations

HET025 (blue), HET050 (green), HET075 (red), and from

the neutrally stratified Couette flow (black). Black dashed

line shows the logarithmic velocity profile, and green dot-

dashed line shows the Monin-Obukhov log-linear velocity

profile computed with the surface friction velocity and the

surface buoyancy flux from the simulation HET050 (see

text for details).
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Figure 3: Turbulence kinetic energy from simulations

HET025 (blue), HET050 (green), and HET075 (red).



spanwise and the vertical velocity variances are consid-

erable, although they are a few times smaller than the

streamwise velocity variance. In the case HET025, the

dominating contribution to the TKE is by uu, whereas

both vv and ww are very small.

One quantitative measure of the anisotropy of turbu-

lence is the departure-from-isotropy tensor defined as

bi j =

〈
u′iu

′
j

〉

〈
u′2k

〉 −
1

3
δi j. (9)

In isotropic turbulence, all components of bi j are zero.

In the two-component limit, where velocity fluctuations

in one direction (e.g., vertical) are suppressed, the re-

spective diagonal component of bi j is equal to −1/3.

As seen from Fig. 5, b33 is negative throughout the

flow in the simulations HET050 and HET075, indicat-

ing that the vertical-velocity fluctuations are strongly

damped by the buoyancy forces and the turbulence is

strongly anisotropic. In the simulation HET025, b33 is

positive in some regions of the flow, but turbulence there

is very week and all three velocity variances, and hence

the TKE, are negligibly small.

As would be expected, the temperature variance θθ =〈
θ′2

〉
, increases with the increasing amplitude of the sur-

face temperature variations δθ, Fig. 6. It is significant

that the large values of θθ are confined to the immediate

vicinity of the lower and upper boundaries, and the tem-

perature variance is small in the bulk of the flow interior

0.1 ≤ x3 ≤ 0.9.

Vertical profiles of the streamwise momentum-flux

component (denoted by wu) and of the vertical temper-

ature flux (denoted by wθ) are shown in Figs. 7 and 8,

respectively. The spanwise momentum-flux component

(not shown) is negligibly small in all simulations. In the

steady state, the total fluxes, i.e., the sum of turbulent and

molecular fluxes, are depth-constant. That is,

〈
u′3u′1

〉
−

1

Re

∂〈u1〉

∂x3
= const, (10)

and

〈
u′3θ′

〉
−

1

PrRe

∂
〈
θ
〉

∂x3
= const. (11)

In the laminar Couette flow, the contributions to wu and

wθ are due to molecular diffusion only, and the fluxes are

equal to Re−1 and (PrRe)−1
, respectively.

As seen from Fig. 7, the magnitude of the total stream-

wise momentum-flux component increases with the in-

creasing amplitude of the surface temperature variations.

In the simulation HET025, the turbulent momentum flux

is very small and the total flux is virtually the same as

in the laminar flow. In the simulations HET050 and

HET075, both turbulent flux and molecular flux are neg-

ative, contributing to the downward momentum transport

(positive values of
〈

u′3u′1

〉
can be identified in the case

HET050, but the magnitude of positive momentum flux

is negligibly small).

The total vertical temperature flux, Fig. 8, decreases

with the increasing amplitude of the surface temperature

variations. This is at variance with the total streamwise

momentum-flux component. The total temperature flux

in the simulation HET025 is very close to that in the

laminar flow. However, the turbulent temperature flux〈
u′3θ′

〉
is not entirely negligible. A remarkable feature

of the heterogeneous simulations is the sign of the verti-

cal turbulent temperature flux. Although the flow is sta-

bly stratified in the mean sense and the total (molecu-

lar plus turbulent) vertical temperature flux is negative,

the turbulent heat flux proves to be positive. Turbulent

motions generated by the surface thermal heterogene-

ity transfer heat up the gradient of the mean tempera-

ture. It somewhat resembles convective boundary-layer

flows, where quasi-organized cell-like structures cause a

counter-gradient heat transport.

4.3 VERTICAL-VELOCITY AND TEMPERA-

TURE SKEWNESS

Figure 9 shows vertical profiles of the vertical-velocity

skewness Sw =

〈
u′33 /u′23

3/2
〉

and of the temperature

skewness Sθ =

〈
θ′3/θ′2

3/2
〉

. As seen from the plots,

in all three heterogeneous simulations both Sw and Sθ are

positive near the lower boundary. By symmetry of the

flow about a horizontal plane x3 = 0.5, both Sw and Sθ

are negative near the upper boundary. A positive vertical-

velocity skewness indicates that positive (upward) verti-

cal velocity has a lower fractional area coverage (more

localized) than negative (downward) vertical velocity.

Likewise, a positive temperature skewness indicates a

stronger localization of positive temperature fluctuations

(about a horizontal-mean temperature) as compared to

negative temperature fluctuations.

The situation is broadly similar to that in the dry

convective boundary layer (CBL) driven by the surface

potential-temperature (buoyancy) flux. Both Sw and

Sθ are positive in the major part of the CBL, where

highly localized positive potential-temperature anoma-

lies are collocated with positive vertical velocity, form-

ing the flow structures know as convective plumes. It

is these plumes that account for most of the upward

potential-temperature flux. Visualization of the u3 and

θ fields in our heterogeneous simulations (not shown)



 0

 0.2

 0.4

 0.6

 0.8

 1

0  2⋅10-4  4⋅10-4  6⋅10-4

x
3

uu

 0

 0.2

 0.4

 0.6

 0.8

 1

0  5⋅10-5  1⋅10-4  2⋅10-4

x
3

vv, ww

Figure 4: (left) Streamwise velocity variance, and (right) spanwise (dot-dashed curves) and vertical (dashed curves)

velocity variances from simulations HET025 (blue), HET050 (green), and HET075 (red).
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isotropy tensor, Eq. (9), from simulations HET025 (blue),

HET050 (green), and HET075 (red).



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

x
3

θθ

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.1  0.2  0.3

x
3

θθ

Figure 6: (left) Temperature variance from simulations HET025 (blue), HET050 (green), and HET075 (red). (right)

The same as in the left panel but for the lower part of the domain.
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(red). Solid curves show total (turbulent plus molecular)
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due to turbulence and due to molecular diffusion, respec-
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reveals strongly localized quasi-coherent flow structures

characterized by high positive values of the vertical ve-

locity and hight positive fluctuations of potential tem-

perature (about a horizontal-mean temperature). It is

these structures that generate positive turbulent potential-

temperature flux in the lower part of the flow (Fig. 8),

i.e., precisely where both Sw and Sθ are positive (Fig. 9).

In the upper part of the flow, large negative vertical ve-

locity (Sw is negative) is collocated with large negative

potential-temperature fluctuation (Sθ is negative), lead-

ing to a positive turbulent potential-temperature flux.

4.4 FLUX OF TEMPERATURE VARIANCE

Using LES, MS16 performed a comparative analysis

of the second-moment budgets and mixing intensity

in weakly (moderately) stable boundary layers over

thermally-homogeneous and thermally-heterogeneous

surfaces. Among other things, the study revealed a key

role of the temperature variance in turbulent mixing in

a horizontally heterogeneous SBL and an importance of

the third-order turbulent transport term in maintaining

the temperature-variance budget. Due to the surface het-

erogeneity, the third-order moment, i.e., the vertical flux

of temperature variance (denoted by wθθ), is non-zero at

the surface. As a result, the turbulent transport term (di-

vergence of the temperature-variance flux) not only re-

distributes the temperature variance in the vertical, but is

a net gain.

The following expression is used to estimate the verti-

cal flux of temperature variance on the basis of LES data:

wθθ =
〈

ũ′3θ̃′2
〉
+

〈
ũ′3θ̃s2

′
〉

+2

〈
θ̃′ũs

3θs
′
〉
+

〈
ũs

3θs2

〉
, (12)

where a tilde denotes a resolved-scale (filtered) quan-

tity, and the superscript “s” denotes a sub-grid (sub-filter)

scale fluctuation. As in the previous sections, an overbar

denotes a horizontal-mean quantity, a prime denotes a

fluctuation about a horizontal mean, and the angle brack-

ets denote the quantities averaged over time. The first

two terms on the r.h.s. of Eq. (12) are zero at the surface

because of zero vertical velocity ũ3. The last term cannot

be estimated from the LES but is presumably small (see

MS16 and Machulskaya and Mironov, 2018, for discus-

sion). The third term is zero in the homogeneous SBL

because of zero θ̃′ at the surface. In the heterogeneous

SBL, surface temperature variations modify local stabil-

ity conditions and thus modulate the surface temperature

flux. The surface temperature θ̃ and the surface temper-

ature flux ũs
3θs prove to be positively correlated, leading

to a positive flux of temperature variance at the surface.

Within the DNS framework, the expression for the ver-

tical flux of temperature variance reads

wθθ =
〈

u′3θ′2
〉
−

1

PrRe

∂
〈

θ′2
〉

∂x3
. (13)

It is instructive to establish the correspondence be-

tween the LES-based and DNS-based estimates of the

temperature-variance flux.

The first two terms on the r.h.s. of Eq. (12) describe

the transport of resolved (first term) and sib-grid (sec-

ond term) temperature variance by the resolved vertical

velocity ũ3. The sum of these terms is in one-to-one cor-

respondence with the first term on the r.h.s. of Eq. (13)

that describes the transport of temperature variance by

the vertical velocity (there are no sub-grid scale quan-

tities in DNS, hence there is only “total” velocity and

“total” temperature variance).

There is no one-to-one matching of the third and the

fourth terms on the r.h.s. of Eq. (12) with the second term

on the r.h.s. of Eq. (13). It can be readily seen, however,

that under certain conditions the LES and DNS terms

are closely analogous. If the resolution is sufficiently

high, most energy-containing scales of motion are sim-

ulated explicitely by the LES code (which is in fact the

basic idea of LES), and the sub-grid scale turbulence is

nearly isotropic. Then, the sub-grid scale temperature

flux is of diffusive and down-gradient character, that is,

ũs
i θ

s =−κ̃s∂θ̃/∂xi, where κ̃s is the sub-grid scale temper-

ature diffusivity. The third term on the r.h.s. of Eq. (12)

becomes

2

〈
θ̃′ũs

3θs
′
〉
=−

〈
κ̃s

∂θ̃′2

∂x3

〉

−

〈
κ̃′

s

∂θ̃′2

∂x3

〉
−

〈
κ̃′

sθ̃
′

∂θ̃

∂x3

〉
. (14)

Applying a diffusive down-gradient approximation to the

fourth term on the r.h.s. of Eq. (12), we obtain

〈
ũs

3θs2

〉
=−

〈
κ̃s

∂θ̃s2

∂x3

〉
−

〈
κ̃′

s

∂θ̃s2
′

∂x3

〉
. (15)

If the temperature diffusivity κ̃s does not change con-

siderably in space (κ̃′
s is small) the second and the third

terms on the r.h.s. of Eq. (14) and the second term on

the r.h.s. of Eq. (15) can be neglected. If changes of κ̃s

in time can also be neglected (κ̃s −
〈
κ̃s

〉
is small), then

Eqs. (12), (14) and (15) yield the following expression

for the LES-based vertical temperature-variance flux:

wθθ =

〈
ũ′3

(
θ̃′2 + θ̃s2

′)〉
−

1

PrsRes

∂

〈
θ̃′2 + θ̃s2

〉

∂x3
. (16)



Here, Prs and Res and the Prandtl number and the

Reynolds number, respectively, defined in terms of (con-

stant) sub-grid scale viscosity and (constant) sub-grid

scale temperature diffusivity. Thus, the estimates of

the vertical temperature-variance flux based on DNS,

Eq. (13), and on LES, Eq. (16), coincide up to defini-

tions of the temperature variance and of the Prandtl and

Reynolds numbers.

Vertical profiles of wθθ from our heterogeneous DNS

runs are shown in Fig. 10. Both the turbulent contribution

and the molecular contribution to wθθ given by the first

term and the second term on the r.h.s. of Eq. (13), respec-

tively, are positive close to the lower boundary (by sym-

metry, these contributions are negative close to the up-

per boundary). Importantly, the molecular temperature-

variance flux is non-zero at the surface. Hence, the third-

order transport term not only redistributes the tempera-

ture variance in the vertical, but is a net gain. The situa-

tion is broadly similar to that in weakly (moderately) sta-

ble flows, where the surface thermal heterogeneity pro-

duces wθθ that serves to increase the temperature vari-

ance in the boundary layer.

5. CONCLUSIONS

Direct numerical simulations at bulk Reynolds number

Re = 104 and bulk Richardson number Ri = 0.25 are

performed to analyze the structure and mixing intensity

in strongly stable boundary-layer flows over thermally

homogeneous and heterogeneous surfaces. An idealized

plane Couette flow set-up is used as a proxy for real-

world flows. The flow is driven by a fixed velocity at

the upper surface, while the lower surface is at rest. The

temperature at the horizontal upper and lower surfaces is

either homogeneous or varies sinusoidally in the stream-

wise direction, while the horizontal-mean temperature is

the same in the homogeneous and heterogeneous cases.

The stratification is strong enough to quench turbu-

lence over homogeneous surfaces, resulting in velocity

and temperature profiles that vary linearly with height.

However, turbulence survives over heterogeneous sur-

faces. Both the molecular diffusion and the turbulence

contribute to the downward, i.e., the down-gradient,

transfer of horizontal momentum. The total (diffusive

plus turbulent) heat flux is directed downward. How-

ever, the turbulent contribution to the heat flux appears

to be positive, i.e., up the gradient of the mean tem-

perature. An analysis of the second-order velocity and

temperature covariances and of the vertical-velocity and

temperature skewness suggests that the counter-gradient

heat transport is due to quasi-organized cell-like vortex

motions generated by the surface thermal heterogene-

ity. These motions act to transfer heat upwards similar

to quasi-organized cell-like structures that transfer heat

upwards in convective boundary layers. Thus, the flow

over heterogeneous surface features local convective in-

stabilities and upward eddy heat transport, although the

overall stratification remains stable and the heat is trans-

ported downward in the mean.

Due to the surface thermal heterogeneity, the verti-

cal flux of temperature variance is non-zero at the sur-

face. As a result, the transport term (divergence of the

temperature-variance flux) in the temperature-variance

budget not only redistributes the temperature variance in

the vertical, but is a net gain. The same effect is encoun-

tered in weakly (moderately) stable flows over thermally

heterogeneous surfaces, where the third-order transport

terms serves to increase the temperature variance in the

boundary layer.

A subject of our future work is a comprehensive anal-

ysis of the second-moment budgets, where the emphasis

is on the turbulence anisotropy and the role of pressure-

scrambling effects in maintaining the budgets. Efforts

will also be made to use the DNS findings to improve

parameterizations of strongly stable boundary layers in

large-scale atmospheric models.
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