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1 INTRODUCTION 

The US Army Research Laboratory (ARL) has 
been performing long-term research into 
application of the Advanced Research version of 
the Weather Research and Forecast (WRF-ARW) 
model (Skamarock et al. 2008) for battlefield short-
range forecasting in a field-deployed location. The 
purpose of these forecasts is to provide weather 
support for mission planning and execution and to 
augment coarser resolution models for specific 
applications required by field deployed units.   

There are three primary goals in this research. 
The ultimate goal is to deploy WRF in a forward 
location and produce timely and useful 0- to 3-h 
and perhaps 0- to 6-h forecasts (nowcasts) 
tailored to the individual end user. Secondly, we 
need to increase the resolution so that user needs 
are met. Specifically, we require a grid spacing of 
roughly 1 km to resolve approximately 5-km-scale 
atmospheric phenomena that are necessary to 
resolve the detailed flow field over complex terrain.  

Thirdly, there is a need to provide a measure of 
forecast uncertainty. Since WRE-N system 
operators are unlikely to have a meteorological 
background, the need to express forecast 
confidence is essential. There are a number of 
ways to achieve this. One is to use a time-lagged 
ensemble (Lu et al. 2007), which involves setting 
up and running the model in a rapid update cycle 
mode and compiling statistics and variances 
based on sequential model output. Another 
method to achieve the goal of developing a 
measure of uncertainty involves using physics-
based ensembles (Stensrud et al. 2000). This 
method involves making several model runs with 
different physics packages selected and 
calculating model ensemble statistics from the 
model runs.  

The goal of this aspect of the current research is 
to examine the performance of a number of 
physics packages to see which performs best in a 
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complex terrain environment. We selected a 
southern California domain that has been widely 
used and documented at ARL (Dumais et al. 2009, 
2013; Dyer et al. 2015, 2016; Foley et al. 2015). 
The inner nests of this domain include coastal, 
transitional, mountainous, marine, urban, 
agricultural, forested, and desert environments. To 
focus on and examine the verification of surface 
and near-surface properties and focus on the 
diurnal variation of the convective boundary layer 
(BL) during weak synoptic forcing, we examined a 
number of planetary BL (PBL) options using the 
latest version of WRF-ARW (v.3.8.1, when this 
research began). 

The primary goal in the current research is to 
determine which of the BL/SL parameterization 
schemes works best for generalized forward 
deployments where the deployed location is not 
known in advance. Because the modeling system 
is preconfigured, one scheme will be set up for 
use in the deployed location, regardless of 
location. Our modeling domain was also chosen to 
represent a number of geographic regions 
focusing on complex terrain. This goal is 
challenging from the standpoint of not only 
capturing a complex range of physical processes, 
land use, and elevations, but also accounting for 
the steep gradients in elevation, which can 
potentially make achieving modeling stability 
criteria more difficult. Our evaluation of these 7 
schemes is based largely on surface 
meteorological parameters, including temperature, 
dew point, and wind speed. In addition, we briefly 
examine the model derived PBL depth, a 
parameter important in our application. Talagrand 
diagrams were constructed to examine the 
feasibility of using a BL physics based ensemble 
to potentially derive measures of model 
uncertainty. 



2 MODEL CONFIGURATION 

The numerical model used in this analysis, the 
WRF-ARW (Skamarock 2008), is a community 
weather forecast model designed and supported 
by NCAR. For the purposes of this study, WRF 
v3.8.1 was selected.  This study uses a triple nest 
configuration of WRF-ARW centered 
approximately near San Diego, California (Figure 
1). The domain includes a variety of geography, 
land use, and topography. The marine 
environment, coastal environment, large valley, 
gently sloping desert, and mountainous terrain are 
all represented. Regarding land use, there are 
urban, suburban, agricultural, grassland, arid, and 
mountainous areas with a variety of subtropical 
and mid-latitude vegetation including grassland 
and forest. The domains are shown in Fig. 6. 
WRE-N was employed an outer 9-km nest of 175 
× 175 grid points (1566 × 1566 km) (D1), 242 × 
241 grid points on the middle 3-km nest (720 × 
720km) (D2), and 127 × 127 grid points on the 1-
km inner nest (126 × 126 km) (D3). The model top 
was selected to be 10mb. Although we 
concentrated on analysis of the 09-10 Feb 2012 
event, additional simulations were also run for the 
other 4 days in our dataset. We chose to 
concentrate on this case since the primary intent 
of this study was to examine the model’s ability to 
capture the development of the daytime CBL and 
transition to the nocturnal BL. 
 

  
Figure 1.  Location of the triple nested model 
domain used in these simulations. 

The model specifications common to all 7 
experiments using WRF-ARW as employed in this 
study are shown in Table 1. The FDDA option 
used in these model runs is based on observation 
nudging (Liu et al. 2005; Deng et al. 2009). This 
option is much less computationally expensive 

than traditional 4-D variational data assimilation 
(Huang et al. 2009) or ensemble Kalman filtering 
(Zupanski et al. 2008). Table 2 lists some of the 
data assimilated into the first 6h of the 24h 
forecast. 
Table 1:  Common configuration used in the WRF 
simulations for this study. 

Namelist Parameter Option Selected 

Shortwave Radiation Dudhia Scheme 
Longwave Radiation RRTM 
Explicit moist microphysics Thompson 
Cumulus parameterization Kain-Fritsch 9km only, explicit 1, 3km 
PBL scheme Varies (elsewhere) 
Surface layer Paired with PBL scheme 
Land Surface Scheme NOAH 
Time step to grid ratio (s/km) 3:1 
Horizontal subgrid diffusion Second-order on coordinate surfaces 
Subgrid turbulence closure Horizontal Smagorinsky first order 

 
Table 2:  Selected data assimilation switches as 
configured for this study. 

setting name setting value 

use_tamdar yes 
use_madis_mesonet yes 
use_madis_profiler_npn yes 
use_madis_acars yes 
use_madis_maritime yes 
use_madis_metar yes 
use_madis_raob yes 
use_madis_sao yes 
use_madis_satwin no 
use_madis_satwind1h no 
geog_data_res 2m, 30s, 30s 

 

The 7 PBL/SL parameterization combinations 
selected for this study are listed in Table 3. In 
each of these, the default SL scheme was coupled 
with the PBL scheme being tested because they 
are generally accepted and the most widely used 
by researchers. Where there was a matching SL, 
we used that option. For the others, where multiple 
options existed for SL choice, we used the revised 
MM5 SL scheme. That scheme is reported to work 
with many of the PBL options.



Table 3:  PBL/SL combinations evaluated. 

Case 
no. 

PBL/SL 
option 

PBL scheme SL scheme 

1 5 / 5 
Mellor-Yamada 
Nakanishi and 
Niino (MYNN) 

Nakanishi and 
Niino PBL’s SL 
scheme 

2 11 / 1 Shin-Hong 
Scheme (SH) 

Revised MM5 
SL scheme 

3 2 / 2 
Mellor-Yamada-
Janjic Scheme 
(MYJ) 

Eta similarity 
SL scheme 

4 1 / 1 Yonsei University 
Scheme (YSU) 

Revised MM5 
SL scheme 

5 8 / 1 
Bougeault-
Lacarrère PBL 
(BouLac) 

Revised MM5 
SL scheme 

6 4 / 4 
Quasi-Normal 
Scale Elimination 
(QNSE) 

QNSE PBL 
scheme’s SL 
option 

7 7 / 1 
Asymmetric 
Convective Model 
(ACM2) 

Revised MM5 
SL scheme 

 

3 RESULTS 

Model bias and RMSE were calculated for each of 
the 7 members in the ensemble for each hour of 
the simulation, including the data assimilation 
(hours 1–6), the nowcast period (hours 7–12), and 
the extended forecast (hours 13–24). Over the 
model domain, these periods roughly correspond 
to morning, afternoon, and nighttime hours, 
respectively. This corresponds to, respectively, 
1300 UTC 09 February 2012 through 1800 UTC 
09 February (0500–1000 Pacific Standard Time 
[PST]), 1900 UTC 09 February 2012 through 0000 
UTC 10 February 2012 (1100–1600 PST), and 
0100 UTC 10 February 2012 through 1200 UTC 
10 February 2012 (1700–0400 PST). In addition, 
the overall model statistics were computed (hours 
1–24) and reflect the period 1300 UTC 09 
February 2012 through 1200 UTC 10 February 
2012. 

All of the analyses we present apply to the 
innermost D3 (1-km) domain. The temperature 
bias is shown in Fig. 2. During the data 
assimilation period (1200–1800 UTC) all of the 
schemes show a small forecast bias, typically less 
than 1 K. While the ACM2, BouLac, MYJ, SH, and 
YSU schemes perform very similarly, the MYNN 
and QNSE schemes diverge, showing a negative 
bias, underestimating the surface temperature. 
The former schemes slightly overestimate the 
surface temperature at 2m for the hours 1400 

through 1600 UTC. After hour 4 of the simulation, 
all of the schemes converge and tend toward 
underestimating the surface temperature.  

 
 
Figure 2: Temperature mean bias for the 7 
members. 
 
The bias for the DPT is shown in Fig. 3. For 
the majority of the forecast cycle, the DPT (at 
the surface) is underestimated by the model 
as shown by the negative bias, with the 
exception being between 0000 and 0200 UTC 
(1600–1800 PST). During these 3 h, which 
occur in late afternoon leading into early 
evening, the DPT is overestimated. 
Throughout the simulation, there is larger 
spread among the individual schemes than for 
the temperature bias. 
 

 
Figure 3: Dew point mean bias for the 7 
members. 
 
Looking at the surface wind speed (Fig. 4) bias 
we again see differing behavior for the 3 
periods: assimilation, nowcast, and extended 
forecast. The model overestimates the surface 
wind during data assimilation by as much as 2 
ms–1 but then quickly settles down to near zero 



bias by 4 h into the simulation. There is more 
spread in the model bias by the nowcast 
period, with the greatest bias occurring with the 
QNSE scheme. QNSE overestimates the wind 
speed by >1 ms–1 from hours 9–10 of the 
simulation. In contrast, the ACM2 scheme 
underestimates the wind by as much as 1 ms–1 
around 8 h into the simulation. As in all of the 
previous analyses, the model bias contrast 
between the 7 schemes is most pronounced for 
the latter half of the simulation time. For wind 
speed bias, the best performers at nighttime 
are YSU, SH, and ACM2, with near zero bias 
for the extended forecast period. The worst 
performer for the extended forecast is QNSE, 
followed by MYJ, with a mean bias error of 
approximately 1 ms–1, overestimating the 
surface wind. Note that the physics differences 
appear to be most pronounced during 
nighttime. 

 
Figure 4: Wind speed mean bias for the 7 
members. 

 

We also performed an analysis of the model 
RMSE. The surface (2m) temperature RMSE for 
each of the members is shown in Fig. 5. The 
RMSE averages approximately 2.6 K at the 
beginning of the simulation time. The MYNN 
scheme shows the largest RMSE for the initial 4 h 
while QNSE shows the lowest. After 1400 UTC, 
the RMSE decreases to around 2 K for all of the 
members. For the nowcast period (6–12 h 
simulation time), the RMSE increases fairly 
linearly from about 1.5 to 3.5 K, with the highest 
RMSE associated with the MYNN and QNSE 
schemes. After 15 h, the RMSE of the members 
typically varies from 2.5 to 3.5 K. BouLac, ACM2, 
SH, and YSU follow each other closely toward the 
ending hours of the simulation in the extended 
forecast. Since SH is based on YSU, the similarity 
between these 2 schemes is not unexpected. The 

closeness of these schemes reflects the similarity 
in the formulation of the physics for the nighttime 
case, and these times reflect the nighttime 
scenario over the model domain. The increase of 
RMSE toward the end of the simulation is not 
unexpected since the errors tend to be cumulative. 

 
Figure 5: Temperature RMSE for the 7 members 

Figure 6 shows the DPT RMSE for each of the 
schemes tested. The mean RMSE at the point of 
initialization is approximately 3.3 K, which is 
significant. As data assimilation progresses, the 
RMSE increases to approximately 3.8 K, with an 
increased spread among the schemes tested. 
During the nowcast period the RMSE decreases 
from approximately 4.0 to 2.5 K, corresponding to 
the development of the daytime CBL, and 
decreasing by late afternoon (1600–1800 PST). 
There is little spread among the model members. 
The most notable spread among the model 
members occurs during the early part of the 
nowcast period. MYJ, QNSE, and BouLac perform 
the best during this time with the lowest RMSE of 
all the members. MYNN and ACM2 have the 
highest RMSE of the 7 members during the period 
extending from the end of data assimilation 
through the early part of the 6-h nowcast period. 
There is overall no clearly superior scheme to 
choose from. 

 
Figure 6: Dew point RMSE for the 7 members. 



The wind speed RMSE for the 7 schemes is 
shown in Fig. 7. At model initialization, the RMSE 
is 1.6 ms–1. RMSE then increases to over 3 ms–1 
in the first simulation hour, then settles to about 
2.5 ms–1 the next hour. The RMSE continues to 
decrease for the next 5 h to around 1.5 ms–1 
where it remains for the remainder of the model 
simulation time. There is little difference between 
the individual schemes during the first 5 h. After 
that, the spread between individual BL schemes 
increases. During the nowcast period, which 
corresponds to daytime, the QNSE scheme shows 
the greatest RMSE, followed by BouLac and MYJ. 
The remaining schemes (YSU, SH, YSU, and 
MYNN) have the lowest RMSE. The latter half of 
the simulation time, during the formation and 
maintenance of the nighttime BL, shows the 
greatest spread. MYJ, SH, BouLac, and ACM2, 
show the least RMSE, ranging from 1.2 to 1.5 ms–

1. The greatest variation between schemes occurs 
during the nighttime. This is consistent with the 
analyses of temperature and RH errors presented 
earlier. Differences between the various BL/SL 
formulations appear to be greater at nighttime 
rather than daytime. 

 
Fig. 7: Wind speed RMSE for the 7 members. 

The RMSE and bias calculations for the entire 
forecast period (nowcast and extended forecast) 
period are summarized in Table 4. When we 
eliminate the redundancy in the wind fields (u, v 
components and wind speed), we found that the 
QNSE and BOU schemes performed marginally 
better in the number of measures of forecast 
quality (TEMP, DPT, WSP). Additionally, the SH 
scheme performed very similarly to the YSU 
scheme that it was based on, indicating that the 
scale independent nature of the scheme appears 
not to be important at the grid spacing we used (1 
km). However, overall, the individual differences 
between schemes were small.  

To choose the best overall scheme, we assigned 
rankings (from 1 through 7) for each of the 3 
independent variables (T, DPT, and wind) and 
averaged the RMSE rankings for the nowcast, 
extended forecast, and complete forecast periods, 
for temperature, dew point, and wind speed. Since 
the bias calculation potentially includes large 
swings in the error that may be offset by one in the 
other direction, we evaluated the performance of 
the schemes using only the RMSE.  

The results are shown in Table 5. We included 
rankings for T, DPT, and wind speed.  For the 
nowcast period (daytime), the BouLac scheme 
performs best. For the extended forecast 
(nighttime) YSU, BouLac, and QNSE tied for best 
performance. Overall, for the entire forecast 
period, BouLac performs best for our data. The 
ensemble mean RMSE for temperature varies 
between 2.4 and 3.0 K, DPT RMSE ranges from 
2.8 to 3.4 K and for wind velocity is nearly 
constant at approximately 1.5 ms–1. The standard 
deviation of the RMSE is quite small, indicating the 
small differences between the various PBL 
schemes we tested. 

4 TALAGRAND DIAGRAMS 

To provide an estimate of the utility of the 7 
member PBL/SL scheme combinations for 
producing a valid ensemble that could provide 
useful model statistics and quantification, 
Talagrand diagrams (Hamill 2001; Wilks 2011), 
also known as rank histograms, were produced for 
this study. The shape and distributions shown by 
these diagrams represent a measure of the validity 
of an ensemble of forecasts and tell us about the 
relationship of the forecasts to the observed data. 

The 2m temperature histogram is shown in Fig. 8. 
Very few data are represented in bins 1–7, and a 
majority of the measurements occur in bin 8. This 
type of plot is produced when the observed value 
is higher than nearly all of the ensemble forecasts. 
Since very little data appear in the other bins, the 
WRF model consistently underestimates the late 
afternoon surface temperatures for the 7 PBL/SL 
schemes considered in this analysis. The 
observed temperature is consistently higher than 
the ensemble members and independent of which 
scheme we choose for the PBL/SL physics. 

 



 
Fig. 8 WRF D3 (1-km) ensemble rank histogram 
produced for 00Z 10 February 2012, surface (2m) 
temperature. 

 

The Talagrand diagram for DPT (Fig. 9) and WSP 
(Fig. 10) are notably different. Here we obtained a 
classic U-shaped plot, which is produced when 
there are a sufficient number of low and high 
biases but the individual members do not spread 
out enough to provide an adequate statistical 
measure of spread within the ensemble. Although 
there is some spread in the ensemble members, 
the spread is small, resulting in relatively few 
samples in the intermediate bins and a majority 
lying at the extreme bins. While this represents an 
improvement in the quality of the spread produced 
by the ensemble, it remains inadequate, as the 
idealized plot would be relatively flat through all 8 
bins (7 members plus the observations).  

 
Fig. 9 WRF D3 (1-km) ensemble rank histogram 
produced for 00Z 10 February 2012, surface (2m) 
DPT. 

 

 
Fig. 10 WRF D3 (1-km) ensemble rank histogram 
produced for 00Z 10 February 2012, 10m wind 
speed. 

 

The characteristic U-shaped patterns are 
consistent with an ensemble whose members do 
not have sufficient spread, contain a mixture of low 
and high biases, and it indicates that the use of 
PBL/SL schemes alone does not constitute a 
“good ensemble”. A “good ensemble” has 
sufficient spread among its members such that the 
distribution is within the envelope of expected 
values for a given probability distribution defined 
by the validation observation(s). While we have 
shown only the results from the 00Z analysis, 
analyses from other times in this run set are 
similar. Therefore, we conclude that using an 
ensemble based solely on the choice of PBL/SL 
scheme combination, is, in itself, insufficient in 
creating a valid ensemble for the purpose of 
nowcasting with this version of WRF, and the 
current dataset (i.e., a single case day), 
geography, and synoptic conditions.  

 

5 PBL DEPTH 

Another useful meteorological quantity aside from 
surface values of temperature, moisture, and wind 
is the PBL depth, which is useful for some 
meteorological sensors since this measure gives 
an indication where enhanced turbulence due to 
convective mixing is expected, and the mixing 
depth for dilution of materials released into the 
atmosphere. Optical systems are also highly 
affected by atmospheric turbulence, including 
mixing and the formation of BL clouds. Turbulence 
also affects radio propagation and the 



performance and safety of unmanned aerial 
vehicles, so knowledge of the PBL depth defines 
the layer where degraded performance may be 
expected. We unfortunately had very few data on 
which to validate our model PBL depth forecasts. 
Only one routine upper air observation station, at 
Miramar Marine Corps Air Station (KNKX), is 
located within the inner (D3) domain (Figure 11). 

.  

Fig.11 Atmospheric sounding at KNKX, San 
Diego (top) 0000 UTC 10 February 2012 
(Courtesy of the University of Wyoming: 
http://weather.uwyo.edu/upperair/sounding.html.) 

The diurnal variation in modeled PBL depth at a 
point near the center of the inner grid (32.9° 
latitude, 117.1° longitude) is shown in Fig. 12. 
Qualitatively, the evolution of the PBL depth is 
consistent with what is expected in the evolution of 
the PBL over land. However, it is not possible to 
follow the growth and decay with the available 
upper air observational data, largely because we 
have only one available site to use in the analysis 
and only point measurements (soundings) at 
regularly scheduled times (i.e., 0000 UTC and 
1200 UTC at KNKX). However, the general 
behavior is captured by the model. 

 
Fig. 12 Temporal evolution of PBL depth for the 7 
PBL schemes tested over the center point of 
innermost (D3, 1-km) domain  

Note the QNSE scheme produced a PBL depth 
significantly deeper than the others. Because the 
sounding was taken near the interface between 
the marine and continental air, the analysis is 
complicated. When comparing PBL depths 
forecast by different BL schemes it is important to 
be aware that the methods used to diagnose the 
PBL depth vary among the schemes. Thus, it is 
possible for 2 schemes to forecast the same 
temperature and moisture profiles and yet 
diagnose a different PBL depth. Differences in 
PBL depth among experiments are then a 
combination of differences in the forecast structure 
of the atmosphere and differences in the methods 
used to diagnose the PBL depth. Two general 
methods are used to estimate the depth of the 
PBL: one based on the Richardson number and 
the other based on the vertical profile of 
temperature. The thresholds for detection vary 
among the individual schemes. Reen et al. (2014) 
explored this issue in more detail. A more detailed 
analysis will follow. 

We performed a limited qualitative analysis of the 
variation in the PBL depth by the model over the 
innermost (D3) domain (Figs. 13–16). Each figure 
shows the D3 PBL depth at 0000 UTC (1600 PST) 
10 February 2012 for the 7 schemes; we also 
include contours of the terrain height (in meters).  

Figure 13 shows the horizontal variation of the 
PBL over the innermost model domain at 0000 
UTC 10 February for the MYNN PBL scheme. As 
expected, the lowest PBL depths are found over 
the cool waters since the daytime surface 
temperature increase is greater over the land than 
over the water. Where surface temperature is the 
highest, we find the deepest PBLs. Areas removed 
from the coast show greater PBL depths. The 
enhanced surface mixing caused by disturbed air 
flow over the higher terrain also results in greater 
PBL depths. The model appears to be reasonably 
reproducing the basic physics that controls the 
depth of the PBL. That is, the surface heating and 
mixing combine to contribute to greater PBL 
depths with the expected geographical distribution. 
The maximum depths presented by the model 
data are in the vicinity of 1.0 to 1.2 km, which is 
reasonable for the surface heating expected 
during the wintertime over Southern California. 
Near the coastlines, and over water, the PBL 
depths are from a few tens of meters to a couple 
hundred meters. These values are again 
consistent with the formation of a stable marine 
BL, consistent with the cold waters of the eastern 
Pacific (Angevine 2006). The small-scale structure 
evident over the eastern half of the domain reflects 

http://weather.uwyo.edu/upperair/sounding.html


the effects of the higher terrain (and importantly, 
gradients) in generating mixing from the surface to 
drive the PBL and the enhanced entrainment of air 
from above the capping inversion in these 
situations. While 5 of the 7 schemes we looked at 
(Fig 13, 14) produced reasonably similar PBL 
depths over the domain, the ACM2 and QNSE 
schemes (Fig 15, 16) produced notably deeper 
PBLs inland in the vicinity of the higher terrain.  

The deepest PBL depths are associated with the 
strongest heating (Figure 17) and secondarily, with 
the terrain height. Furthermore, the PBL was 
deeper further away from the marine influences, 
as would be expected.  

 
Fig. 13 PBL depth (meters) valid at 0000 UTC 10 
February 2012 for the MYNN PBL option 

 

 
Fig. 14 PBL depth (meters) valid at 0000 UTC 10 
February 2012 for the MYJ PBL option 

 

 
Fig. 15 PBL depth (meters) valid at 0000 UTC 10 
February 2012 for the QNSE PBL option 

 
Fig. 16 PBL depth (meters) valid at 0000 UTC 10 
February 2012 for the ACM2 PBL option 

 

 
Fig. 17 Ensemble mean surface (2m AGL) 
temperature (Kelvin) over the innermost model 
domain (D3, 1-km grid) at 0000 UTC 10 February 
2012  



The PBL depth is the focus of continued research 
because of its importance and potential 
application. 

6 SUMMARY AND CONCLUSIONS 

We tested 7 PBL/SL parameterization schemes 
using a 9-/3-/1-km triple nest grid configuration 
centered over San Diego, California, under 
quiescent conditions in late winter. There was little 
spread in the RMSE/bias statistics for the 
schemes we tested. The WRF model had its 
greatest difficulty in capturing the transition 
between daytime and nighttime boundary layers 
for our test day. The greatest variation between 
schemes is with the nocturnal BL. For the nowcast 
period, the best overall performer was BouLac, 
followed by MYJ. For the extended forecast 
period, the YSU, BouLac, and QNSE schemes 
were tied for best performance. For the overall 
forecast period (nowcast, extended) BouLac was 
best, followed by QNSE. The standard deviation of 
the ensemble created using the various PBL 
schemes was small despite the fact that the 
schemes we tested were devised using local, 
nonlocal, and hybrid approaches.  

While the SH scheme was developed primarily to 
address the scale awareness problem (Shin and 
Hong, 2013), we did not see an improvement in 
using this scheme with a 1-km grid spacing, in 
particular with the YSU scheme, which shares 
common lineage.  

Our study examined only a single day, under 
quiescent conditions. In addition to the 7 
simulations we performed here, we produced data 
for 4 additional days with more active synoptic 
situations, and this is the subject of ongoing 
analysis. In addition to the BL/SL schemes, we are 
looking at the other physics categories as well as 
the initialization data in an attempt to quantify 
model spread and uncertainty.  

Independent statistical analysis by Smith et al. 
(2018) is in agreement with our determination of 
the lack of variance between the schemes, and 
attributes only 3%–4% of total model variance to 
the PBL schemes. That calculation involves, at the 
highest level, an extension of a common data 
analytics approach called ANOVA (for analysis of 
variance), which uses a parameter eta (η). 
Bakeman (2005) found that a generalized eta 
squared, ηG, was superior. Eta squared (ηG2) was 
calculated using the lsr package in R (Navarro 
2015), allowing us to estimate the relative 
contribution to model error (uncertainty) due to the 
BL physics packages. 

Talagrand (Hamill, 2000) diagrams were also 
constructed and show very little dispersion 
between the 7 members. Because we did not 
obtain an optimal flat response in our Talagrand 
plots, but rather a classic “U shaped” distribution 
characteristic of inadequate spread between the 
ensemble members for all but temperature, the 
use of only a physics-based ensemble (in this 
case BL/SL combinations) is inadequate for 
deriving probabilistic information and forecast 
uncertainty. Research looking into the relative 
contributions to model uncertainty due to the other 
physics schemes and initialization data is 
addressed in the DoE approach described by 
Smith et al. (2018). 
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Table 4. Mean bias and RMSE (K for temperatures, ms-1 for winds) for 1-km ensemble members (D3) (1 
km) for 1200 UTC 9 February through 1200 UTC 10 February (complete forecast, 6–24 h). Best 
performers in each statistic are colored in red. 

Bias/RMSE MYNN SH MYJ YSU BOU QNSE ACM2 

T –1.64/3.04 –0.50/2.78 0.12/2.77 –0.50/2.77 –0.31/2.68 –0.84/2.66 –0.42/2.71 

DPT –1.37/2.99 –1.30/3.05 –1.23/2.91 –1.24/3.03 –1.06/2.90 –1.21/2.89 –1.56/3.05 

RH –0.52/11.2 –3.23/11.6 –5.09/12.5 –3.03/11.6 –3.03/11.2 –2.65/11.8 –3.97/11.4 

u comp 0.10/1.54 0.30/1.42 0.03/1.68 0.31/1.42 0.22/1.46 –0.11/1.87 0.22/1.46 

v comp 0.18/1.58 0.20/1.53 0.10/1.62 0.20/1.52 0.20/1.54 0.10/1.69 0.25/1.55 

Wind 0.31/1.51 0.07/1.35 0.61/1.59 0.06/1.35 0.05/1.42 0.92/1.73 0.15/1.38 



 
Table 5: Ranking for RMSE statistics by scheme (1=best, 7=worst) 

Hours Field MEAN STDEV MYNN SH MYJ YSU BouLac QNSE ACM2 

06 through 12 
(nowcast) 

 

Temp 2.43 0.18 7 6 1 5 2 3 4 
DPT 3.38 0.09 5 5 3 4 1 1 7 
WIND 1.49 0.12 4 1 6 1 5 7 1 
COMP   7 5 3 2 1 4 5 

12 through 24 
(extended) 

 

Temp 2.95 0.15 7 3 6 2 3 1 3 
DPT 2.77 0.07 4 7 2 6 2 1 5 
WIND 1.47 0.16 5 1 6 1 4 7 3 
COMP   7 5 6 1 1 1 4 

06 through 24 
(complete) 

 

Temp 2.77 0.13 7 6 4 4 2 1 3 
DPT 2.97 0.07 4 6 3 5 2 1 6 
WIND 1.47 0.14 5 1 6 1 4 7 3 
COMP   7 5 6 3 1 2 4 
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