24th Conference on Severe Local Storms


Simulations of quasi-stationary convective systems occurring within mesoscale convergence and lifting

Russ S. Schumacher, Colorado State University, Fort Collins, CO

In this study, idealized numerical simulations are used to identify the processes responsible for initiating, organizing, and maintaining quasi-stationary convective systems that produce locally extreme rainfall amounts. Of particular interest are those convective systems that have been observed to occur near mesoscale convective vortices (MCVs) and other midlevel circulations. To simulate the lifting associated with such circulations, a low-level momentum forcing is applied to an initial state that is representative of observed extreme rain events. The initial vertical wind profile includes a sharp reversal of the vertical wind shear with height, indicative of observed low-level jets.

Deep moist convection initiates within the region of mesoscale lifting, and the resulting convective system replicates many of the features of observed systems. The low-level thermodynamic environment is nearly saturated, which is not conducive to the production of a strong surface cold pool; yet the convection quickly organizes into a back-building line. It is shown that a nearly stationary convectively-generated low-level gravity wave is responsible for the linear organization, which continues for several hours. New convective cells repeatedly form on the southwest end of the line and move to the northeast, resulting in large local rainfall amounts. In the later stages of the simulated convective system, a cold pool does develop, but its interaction with the strong reverse shear at low levels is not optimized for the maintenance of deep convection along its edge. A series of sensitivity experiments shows some of the effects of hydrometeor evaporation and melting, planetary rotation, and the imposed mesoscale forcing.

Poster Session 4, Bow Echoes, MCSs, and Mesoscale Processes Posters
Tuesday, 28 October 2008, 3:00 PM-4:30 PM, Madison Ballroom

Previous paper  Next paper

Browse or search entire meeting

AMS Home Page