Deep moist convection initiates within the region of mesoscale lifting, and the resulting convective system replicates many of the features of observed systems. The low-level thermodynamic environment is nearly saturated, which is not conducive to the production of a strong surface cold pool; yet the convection quickly organizes into a back-building line. It is shown that a nearly stationary convectively-generated low-level gravity wave is responsible for the linear organization, which continues for several hours. New convective cells repeatedly form on the southwest end of the line and move to the northeast, resulting in large local rainfall amounts. In the later stages of the simulated convective system, a cold pool does develop, but its interaction with the strong reverse shear at low levels is not optimized for the maintenance of deep convection along its edge. A series of sensitivity experiments shows some of the effects of hydrometeor evaporation and melting, planetary rotation, and the imposed mesoscale forcing.