8B.3
Single and double ITCZ in aqua-planet models with globally temporarily uniform sea surface temperature and solar angle: An interpretation
Winston C. Chao, NASA/GSFC, Greenbelt, MD; and B. Chen
It has been known for more than a decade that an aqua-planet model with globally uniform sea surface temperature and solar insolation angle can generate ITCZ (intertropical convergence zone). Previous studies have shown that the ITCZ structure under such model settings can be changed between a single ITCZ over the equator and a double ITCZ straddling the equator through one of several measures. These measures include switching to a different cumulus parameterization scheme, changes within the cumulus parameterization scheme, and changes in other aspects of the model design such as horizontal resolution. In this paper an interpretation for these findings is offered. Under the aforementioned model settings, the latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth’s rotation, exists. The first type is equator-ward and is directly related to the earth’s rotation and thus not sensitive to model design changes. The second type is poleward and is related to the convective circulation and thus is sensitive to model design changes. Due to the shape of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.
Session 8B, Large-Scale Dynamics and Convection III (Parallel with Sessions 8A, 8C, and 8D)
Wednesday, 1 May 2002, 9:15 AM-10:30 AM
Next paper