25th Conference on Hurricanes and Tropical Meteorology

14C.4

Interaction Between Surface Heat Budgets, Sea Surface Temperature and Deep Convection in the Tropical Western Pacific

Shu-Hsien Chou, NASA/GSFC, Greenbelt, MD; and M. -. D. Chou and P. -. H. Lin

The surface heat budgets, sea surface temperature (SST), clouds and winds in the tropical western Pacific are analyzed and compared for the periods April-June 1998 and 1999. The spring of 1998 is in the later phase of a strong El Nino, whereas the spring of 1999 is in a period of a La Nina. The surface shortwave (SW) and longwave (LW) radiative fluxes are retrieved from Japanese Geostationary Meteorological Satellite radiance measurements, while the surface turbulent fluxes (latent and sensible heat) are derived from SSM/I-inferred surface air humidity and winds. The SST and sea-air temperature differences are taken from NCEP/NCAR reanalysis. Deep convection is inferred from the outgoing longwave radiation of NOAA's polar-orbiting satellites.

The longitudinal shift in maximum SST, deep convection and winds during El Nino and La Nina have a large impact on the spatial distribution of surface heating. Changes in clouds between these two periods have a large impact on the monthly-mean radiative heating, exceeding 60 W m-2 over large oceanic regions. Similarly, the differences in wind speeds and SST have a large impact on the latent cooling, exceeding 40 W m-2 over large oceanic areas. However, the maximum impacts on radiative and latent heat fluxes occur in different regions. The regions of maximum impact on radiative fluxes coincide with the regions of maximum change in clouds, whereas regions of maximum impact on turbulent heat fluxes coincide with the regions of maximum change in trade winds. The time-evolution of SST in relation to that of surface heat fluxes and winds are investigated and compared between the two El Nino and La Nina periods. In regions where wind speeds (or wind stresses) are large, the change in SST agrees well with the change in the net surface heating, indicating a deep ocean mixed layer associated with strong trade winds. On the other hand, in regions where radiative fluxes are large, the change in SST does not agree well with the change in the net surface heating, indicating the importance of solar radiation penetrating through the bottom of the shadow ocean mixed layer.

extended abstract  Extended Abstract (16K)

Session 14C, Ocean-Atmosphere Interaction III (Parallel with Sessions 14A, 14B, and 14D)
Thursday, 2 May 2002, 2:00 PM-3:30 PM

Previous paper  Next paper

Browse or search entire meeting

AMS Home Page