Probabilistic Estimation of Near Surface Winds in Tornadic Vortices

Sean Crowell, Univ of Oklahoma
Dr. Louis Wicker, NSSL
Dr. Luther White, Univ. of Oklahoma

Severe Local Storms Conference, October 11, 2010

Motivation

- Tornadoes as concentrated vortices - "simple" dynamics
- Existence of data VORTEX2
- Partial observability - most damaging winds not observable by radar!

Tornado Models

- Navier-Stokes Equations
- Conservation of Energy
- Turbulence Parameterization
- Moisture, etc...
- Can we use a simplified set of equations and prior info to extract other velocity fields?

Tangential Velocity Models

- Tangential component estimated from data

$$
\begin{aligned}
& v(r, z)=v_{c} \phi\left(r ; \vec{q}_{r}\right) \psi\left(z ; \vec{q}_{z}\right) \\
& \phi_{w w}\left(x ; n, k, x_{c}\right)=\frac{n x_{c}^{n-k} x^{k}}{(n-k) x_{c}^{n}+k x^{n}}
\end{aligned}
$$

From Fiedler (1994)

Wood-White vortex profiles $(n=2,3,5)$

Inverse (Least-Squares) Error Probability Density Function

- To fit v we can minimize the sum of least squares function:

$$
J\left(v_{c}, \vec{q}_{r}, \vec{q}_{z}\right)=\sum_{i=1}^{N_{\mathrm{obs}}}\left(v_{c} \phi\left(r_{i} ; \vec{q}_{r}\right) \psi\left(z_{i} ; \vec{q}_{z}\right)-\hat{v}_{i}\right)^{2}
$$

- We can turn this into a probability density function:

$$
p\left(v_{c}, \vec{q}_{r}, \vec{q}_{z}\right)=\kappa e^{-J}
$$

- Optimal parameters \rightarrow Maximum likelihood estimator
- Uncertainty \rightarrow sample parameter space, retrieved velocities weighted by probabilities

The Mathematical Problem Statement

GOAL: Solve the system

$$
\begin{aligned}
& \zeta u-\eta w=\nu\left(\zeta_{r}-\eta_{z}\right) \\
& \frac{1}{r}(r u)_{r}+w_{z}=0
\end{aligned}
$$

on the domain

$$
\begin{aligned}
\Omega_{u} & =(0, R) \times(0, h) \\
& \subset(0, R) \times(0, H)=\Omega,
\end{aligned}
$$

and $\zeta=\frac{1}{r}(r v)_{r}$ and $\eta=-v_{z}$ are "known" (estimated from data) on $\Omega \backslash \Omega_{u}$.

Interesting Questions

- Sensitivity of u and w to errors in v
- Sensitivity to noisy data, quantity of data
- Sensitivity to unknown boundary conditions at $r=R$

Ω

Solution by Method of Characteristics

Solve first equation for u or w and plug in to continuity equation \Rightarrow hyperbolic equations (and characteristic equations):

- u equations:

$$
\begin{aligned}
& \eta u_{r}+\zeta u_{z}+\eta\left(\frac{1}{r}+\left(\frac{\zeta}{\eta}\right)_{z}\right) u=\nu \eta\left(\frac{\zeta_{r}-\eta_{z}}{\eta}\right)_{z} \\
\Rightarrow & \frac{d r}{d t}=\eta, \frac{d z}{d t}=\zeta, \frac{d u}{d t}+\eta\left(\frac{1}{r}+\left(\frac{\zeta}{\eta}\right)_{z}\right) u=\nu \eta\left(\frac{\zeta_{r}-\eta_{z}}{\eta}\right)_{z}
\end{aligned}
$$

- w equations:

$$
\begin{aligned}
& \eta w_{r}+\zeta w_{z}+\frac{\zeta}{r}\left(r \frac{\eta}{\zeta}\right)_{r} w=-\frac{\nu \zeta}{r}\left(r \frac{\zeta_{r}-\eta_{z}}{\zeta}\right)_{r} \\
\Rightarrow & \frac{d r}{d \tau}=\eta, \frac{d z}{d \tau}=\zeta, \frac{d w}{d \tau}+\frac{\zeta}{r}\left(r \frac{\eta}{\zeta}\right)_{r} w=-\frac{\nu \zeta}{r}\left(r \frac{\zeta_{r}-\eta_{z}}{\zeta}\right)_{r}
\end{aligned}
$$

Solution Methodology Flowchart

Testing the Methodology

- Model output from Davies-Jones (2008) idealized thunderstorm/tornado cyclone model
- Take data for u and w from model output at $z=h$ \Rightarrow initial conditions for characteristic equations (perfect data).

Radial Velocity Estimates $(0 \leq z \leq 210,0 \leq r \leq 966)$

MLE U
MLE WW Estimated Radial Velocity $(\mathrm{h}=462)$

Davies-Jones U

Sample Mean U

Error Measurements

Minimum Observable Height (h) vs Objective Errors for U

Vertical Velocity Estimates $(0 \leq z \leq 210,0 \leq r \leq 966)$

MLE W
MLE Estimated Vertical Velocity $(\mathrm{h}=462)$

Sample Mean W
Sample Mean WW Estimated Vertical Velocity $(h=462)$

Error Measurements

Random Variables from the Samples

Maximum Absolute Horizontal Winds

Thank You!

