Handout (2.9 MB)
Overall, this study determined that the events with a high tornado-producing efficiency (15 May 2003, 25 April 2006, and 8-9 May 2009) were characterized by the tornado-producing supercells tracking near a well-defined, preexisting surface boundary, while the events with a low tornado-producing efficiency (28 April 2002 and 10-11 November 2002) had supercells that did not track near well-defined boundaries. During the null event on 28 April 2002, the high LCL heights, lack of low-level directional wind shear, and the paths of the supercells away from a well-defined surface boundary likely caused the lack of tornado development. The 10-11 November 2002 and 8-9 May 2009 events (the two outbreak events in this study) experienced the strongest low-level helicity values in the study, although the low-level instability values were the weakest. While the strongest low-level wind shear was present with the two outbreak events, the higher low-level instability during the other three non-outbreak events may have compensated for the weaker (but still significant) low-level wind shear. While low LCL heights were present near the locations of the tornadoes during both of the outbreak events, the influence of LCL heights during the other two tornado-producing events was inconclusive due to the possibility of frontal augmentation of the RUC40 model depictions. An axis of strong advection of equivalent potential temperatures was present during four of the events near the locations of the observed supercells and tornadoes, with the only exception being the 8-9 May 2009 outbreak event. The observed weak advection (in combination with a mid-level stable layer) may have kept the supercells isolated during this event, and thereby prolific in producing tornadoes by limiting the competition for the available instability.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner