26th Conference on Hurricanes and Tropical Meteorology


Low Frequency Oscillations in Assimilated Global Datasets Using TRMM Rainfall Observations

Li Tao, George Mason University, Fairfax, VA; and S. Yang, Z. Zhang, A. Hou, and W. S. Olson

Global datasets for the period May-August 1998 from the Goddard Earth Observing System (GEOS) data assimilation system (DAS) with/without assimilated Tropical Rainfall Measuring Mission (TRMM) precipitation are analyzed against European Center for Medium-Range Weather Forecast (ECMWF) output, NOAA observed outgoing longwave radiation (OLR) data, and TRMM measured rainfall. The purpose of this study is to investigate the representation of the Madden-Julian Oscillation (MJO) in GEOS assimilated global datasets, noting the impact of TRMM observed rainfall on the MJO in GEOS data assimilations.

A space-time analysis of the OLR data indicates that the observed OLR exhibits a spectral maximum for eastward-propagating wavenumber 1-3 disturbances with periods of 20-60 days in the 0o-30N latitude band. The assimilated OLR has a similar feature but with a smaller magnitude. However, OLR spectra from assimilations including TRMM rainfall data show better agreement with observed OLR spectra than spectra from assimilations without TRMM rainfall. Similar results are found for wavenumber 4-6 disturbances. There is a spectral peak for eastward-propagating wavenumber 4-6 disturbances with periods of 20-40 days near the equator, while for westward-moving disturbances, a spectral peak is noted for periods of 30-50 days near 25N.

To isolate the MJO, a 30-50 day band filter is selected for this study. It was found that the eastward-propagating waves from the band-filtered observed OLR between 10S-10N are located in the eastern hemisphere. Similar patterns are evident in surface rainfall and the 850 hPa wind field. Assimilation of TRMM-observed rainfall reveals more distinct MJO features in the analysis than without rainfall assimilation.

Similar analyses are also conducted over the Indian summer monsoon and East Asia summer monsoon regions, where the MJO is strongly related to the summer monsoon active-break patterns.

extended abstract  Extended Abstract (104K)

Poster Session 1, Posters
Wednesday, 5 May 2004, 1:30 PM-1:30 PM, Richelieu Room

Previous paper  Next paper

Browse or search entire meeting

AMS Home Page