Idealized Simulations of Mergers Between Squall Lines and Isolated Supercell Thunderstorms
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Background and motivation Squall line cold pool evolution Rear-inflow jet and development of bowing

Mergers between quasi linear convective systems (“squall lines”) and isolated supercells pose

system-scale bowing evolution @ The merger leads to an increase in convective
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tornadoes and large hail occurred with the isolated supercells prior to the merger, while severe b) (strong synoptic forcing, strong vertical wind shear) of thesquall line. 1251 4 K km= ® A strong rearinflow jet develops in response to
straight-line wind reports were maximized post-merger. Furthermore, the mergers were = = meger = e o Changes to the low-level wind orofile within the supercell this pressure perturbation.
observed to precede several key changes in storm structure. In most cases the merged system . J ving p e sup .. 100 o RlJis displaced south, more focused than in
. . L e reflectivity outflow may further contribute to the decline in low-level lifting NOMERGER simulation.
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implications for storm morphology and, as a result, severe weather production. However, the O =2 =3 =4 =5 Th f . ” Kkeni fth © | 1° enhance the RlJ (not shown). C) ' e \ ) N
observations used in these studies have been insufficient to determine the key processes that oot yhupedecto  wshapedecho [ ° ese results are consistent with pre-merger weakening of the X 150- Bk R ERERS o ). YN I
drive these observed changes. As a result, the present study has used idealized numerical - sdquall I.me o;Jsher e bl}l’ IF r e’ZCh anc; HELTD (20h12), and a local > ok e Overall, the merger plays an important role in 1704 i "\ : R A T .
simulations of a squall line-supercell merger to work toward developing a conceptual model ' smaloow (g smaliscale ;stortlo;z tGe szua medslgust ro;rgt :; arthe merger 1251 * instigating and organizing bow echo ~ jeof > = . 2_20 NI
to answer the following question: supercel oo B S I e LR )- | ‘ 52 ) development. g b N .
supercell north end of : : : : | ; ; ne 150 1 - —= — — GEEY - |- -
What are the key dynamical processes responsible for the behavior " Figure 3: Plan view plots of surface potential temperature gradient (top 75 a0 asrs @0 Figure 6: Left panels: plan view plots of simulated radar = | — — —« #940aN |
observed when a squall line merges with an isolated supercell? Figure 1: Schematic diagram describing the three post-merger ; Ifgviﬁ) bi’;fvgeﬁ”; ;406:”2’1”7‘/5"3267’ I;Z’:é‘;‘/’; ‘t’slt‘;fé z’fj”gzg; panels) shaded as x {km) x (km) reflectivity, and wind vectors, at 2 km AGL and '} - - gf SRS |- -
bow echo evolutions observed by French and Parker (2012) . ’ perturbation pressure averaged between 1 and 2 km AGL. 1307 % 7 N
Right panels: y-z cross section of potential temperature 120 Y i 1
perturbation (shaded) and pressure perturbation 180 190 200 210 220 230 240 250 0 |
(contours) averaged in the x-direction over the boxes x (km) 120 130 140 15 160 170180 180 200
shown in (a) and (c). Top panels are for the MERGER —L y (km)
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® Multiple strong mesovortices develop
along the leading edge of the squall line
during/after merger, more so than in the
NOMERGER simulation.
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e I|dealized simulations capture the salient features of observed squall line-supercell
merger cases, revealing some of the key processes at work. Specifically:
i. The merger is preceded by a weakening of the squall line’s cold pool, leading

0.03

» » » » » » » » » 2
» » » » » » » » » A E]
» » » » » » » » » 2

» » » » » >y >y »

: L {b) AC 0.025 o .. : : : :
o Associated primarily with updraft - e, W 000 to a local decline in squall line intensity. This results in the supercell being
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Figure 2: Simulated radar reﬂectlv.lty (gray shading) and vertical vorticity (colored shqdmg) at 1 km AGL, wind vectors.atz km AGL (blge > ZQ ms’, red >25ms’), (line-end vortex) . T e e e T e s P T ITEETYTREEY M ey e . promote an enhanced severe weather threat in the vicinity of the merger.
and - 2 K potential temperature at the lowest model level at select times between t = 250 and 340 minutes into the simulation. x (km) x (km) x (km) i. Increased low-level rotation (suggests a potential tornado threat).
Idealized simulations were run using CM1. A squall line simulation was run @ Thesquall line weakens locally as merger begins followed by subsequent t Fiure 4« Plan vi lots of vertical vorticity (s, shaded hown), vertical velocity (bl P tour ii. Increased straight line winds.
for 3 hours, after which the base-state vertical wind shear and storm re-intensification south of the merger. The merged supercell becomes the north end 1721 — —~——— 'gure = f VIeW pIOts OT VErticdl VOTHICIEY {5 ', shaded as Shown), VErca: VEIoelny {BHILE comtours,
relative helicity were increased. The model was restarted, and the supercell of the squall line o Bl S \i\i every 5 m s ') and horizontal vorticity vectors (scale vector below color bar) at 1000 m (top panels), Figure 7: Swaths of fields accumulated between 3 and 6 hours into the (left column) from the lowest
was triggered using a warm bubble ahead of the mature SquaII line. ° Post—merger: 1222 .A j\; N\: §§§ 5n0to ?L(mlgndlf ptal:)ell.il), andjOrI;(nl.(SOZOg’) far;;IS) IgcliL CH,:)fd (Ieft t? I;;?htl')tt ;282, 2t8f, GHZng Tlnnutes model level In the MERGER (nght Column) and NOMERGER Sl:mulationS. Flelds include Wlnd Speed (top
Model configuration and parametrizations: o Low-level vertical vorticity increases over a broad area. E o g “ N N RIS SIBECIReNG (T CLa SIS CASOIES e =2 s SIS g O (=i Mt Pe iiratelitel; panels), ver.tlcal vorticity (m/dc.ﬂe panels) and accumulated rainfall (bottom panels). The red star denotes
Horizontal grid: 500 m Lateral boundaries: open o A compaf:t bow echo develops south oftheomergecol :.;u.percell. o m gw RSN NS the approximate merger location.
Vertical grid: 100- 250 m Lower boundary: free slip o A broad line-end vortex structure develops in the vicinity of the merged supercell. 1581 §§ s \\ Veananl
Domain: 400 x 300 x 20 km Coriolis : f-plane (10* ') ® The merged system shares many qualitative similarities with observed merger cases. ::j SRR NN g%% RAERRS e 2 Figure 5: As in figure 4, but focusing on z=50 m AGL at t = 296 min, illustrating the intial stage of the
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Run duration: 6 hours Raditation scheme: none o A so!uall line simulated in jche same .enV|ronment produces a broad bow echo without e, T e ] vortex merger that leads to a broad region of low-level vertical vorticity.
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