The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS) Project

Kiel Ortega1,2, Travis Smith1,2, Jian Zhang2, Carrie Langston1,2, Youcun Qi1,2, Scott Stevens3,4, Jennifer Tate1,2

1OU/CIMMS \hspace{0.2cm} 2NOAA/OAR/NSSL \hspace{0.2cm} 3CSU/CICS-NC \hspace{0.2cm} 4NOAA/NESDIS/NCDC

What is MYRORSS?

- A joint effort between the National Severe Storms Laboratory (NSSL) and National Climatic Data Center (NCDC)
- WSR-88D data will be processed through NSSL’s Warning Decision Support System—Integrated Information (WDSS-II)
- Paired with RUC model analyses, multi-radar multi-sensor (MRMS) grids of different reflectivity, reflectivity-derived and Doppler velocity-derived fields will be produced
- Two primary datasets will be produced: a severe weather dataset (MYRORSS) and a hydrometeorological (HYDRO) dataset
- These datasets will help fill the need for a high quality, high resolution, common reference dataset for severe weather and quantitative precipitation estimation (QPE)

Product Lists

MYRORSS
- Reflectivity
- Reflectivity Composite
- Reflectivity at: lowest altitude, 0 C, -10 C, -20 C
- Low Level Shear
- Mid Level Shear
- Severe Hail Index
- Max. Expected Size of Hail
- Vertically Integrated Liquid
- 18 and 50 dBZ Echo Tops

HYDRO
- Precipitation type
- Precipitation rate
- Quality field
- Gauge-corrected QPE

Velocity data is first dealiased using a 2D technique. The dealiased velocity is then processed through a linear-least squares technique to produce an azimuthal shear field. The azimuthal shear field is then corrected (to account for differences due to distance) and stamped out with a 40 dBZ threshold. Two composite layers of the corrected shear field are created: a 0-3 km AGL composite and a 3-6 km AGL composite. These composites are then used in the merger.

Processing Technical Details

Processing has begun with data from 2008. The goal is to process the entire WSR-88D archive for CONUS radars which is nearly 140 million volume scans.

Continuing Work

- Complete processing
- NSSL: even years, NCDC: odd years
- Manually identify poor data
- Bad data can filter through QC methods (i.e., “hot” radars)
- Complete early projects
- Publish dataset with NCDC

The authors thank Jennifer Tate and local farmers for their assistance with the poster. This poster was created by the authors with funding provided by the National Science Foundation (NSF), National Oceanic and Atmospheric Administration (NOAA), and University of Oklahoma. The locations shown in this poster do not necessarily reflect the views of NOAA or the U.S. Department of Commerce.