P1.16 THE JUNE 1, 2011 HAIL MONSTER EVENT ACROSS EASTERN NEW YORK AND WESTERN NEW ENGLAND

Motivation

CSTAR IV project (2010-2013) with SUNY at Albany examines a variety of severe weather issues including the roles or impacts prefrontal troughs have on severe weather.
From a multi-scale perspective this case will address
(1) Why anomalously large hail occurred ? (2) What caused it ??

CSTAR Grant \#: NA01NWS4680002

$$
\begin{array}{r}
\text { Outlin } \\
\text { Brief svnoptic overview }
\end{array}
$$

Ingredients for Large Hail/Hail Monsters Meso-scale and Sounding Analysis Storm-scale/Radar Highlights of the baseball-size and larger hail events

Anomalous severe weather even Anomalous severe weather event, baseball-size (>2.75") and greater hail reports
The early morning (0900 UTC - 1200 UTC) featured a golf ball-size hail report with the first prefrontal trough An Elevated Mixed Layer (EML) was present over NY and New England

1200 UTC 1 June 2011 Upper Air Analysis

300 hPa Heights (dam), Streamlines \& Divergence $\left(10^{-5} \mathrm{~s}^{-1}\right)$

850 hPa Heights (dam), Dewpoints $\left({ }^{\circ} \mathrm{C}\right.$), Temps (${ }^{\circ}$ C) \& Winds (kts)

1300 UTC: SPC DAY 1 OUTLOOK

Thomas A. Wasula, Brian J. Frugis, and N. A. Stuart
NOAA/National Weather Service, Albany, NY

1200 UTC KALB Sounding
1200 UTC KALB Sounding

HYSPLIT Trajectories of EML

1800 UTC 1 June 2011 Surface Map

1315 UTC 1 June 2011 Visible, Surface, and LTG

1500 UTC 1 June 2011 Surface Map

00 UTC LAPS SBCAPES (J kg ${ }^{-1}$) MSLP (hPa)

Storm-Scale Analysis

Eagle Bridge Baseball Hail

1600 UTC KALB Sounding

Conclusions

- Abundance of instability coupled with deep shear allowed supercells to form producing historically large hail in the Northeast (also tornadoes in New England) - An EML that originated about 5 days earlier in northern Mexico/western TX played a pivotal role in the hail monsters
- A strong cold front (strong surface/850 hPa dewpoint gradient) and a prefrontal surface trough were the key lifting mechanisms during the severe event - Intense updrafts due to thick CAPE allowed 50/55/60/65 dBZ reflectivity cos - Intense updrats due or incredible heights for mammoth hail stones (up to 4" in the Berkshires)

