Objectives

 Identify severe weather outbreaks using kernel density estimation (KDE; Bowman and Azzalini 1997), as developed by Shafer and Doswell (2011), without a time constraint on the severe reports considered (e.g., 24 hours, as in Doswell et al. 2006; Shafer and Doswell 2010, 2011)

•Rank the qualifying cases using multivariate linearweighted indices, based on preconceived notions regarding the severity of outbreaks

climatological •Evaluate characteristics and uncertainty associated with multi-day outbreaks and rankings

Data and Methods

•Severe reports from the Storm Prediction Center severe weather database (Schaeffer and Edwards) 1999) are collected from 1960 to 2011.

•KDE with a Gaussian kernel function and a tunable bandwidth (120 km herein) is used to approximate a probability density function (PDF) associated with the severe reports. The PDF is determined by computing the distance between each report and the grid point of interest. The domain is a 1° latitude-longitude grid encompassing the conterminous United States.

•Severe reports are assessed for 6-h periods, with subsequent periods including the final three hours of the previous period. Using threshold values of the PDF, a KDE region is identified for a particular severe weather event for each 6-h period. Any KDE region that intersects a previous period's contiguous region is identified as part of the same event (case YYYYMMDD_startUTC_clusterID; e.g., ID = $19990503_{30}_{12} = cluster 2 starting at 0600 UTC$ 4 May 1999; see examples in Fig. 6). The reports in each KDE region are collected (duplicates excluded), and each type of report is quantified, detrended if necessary, and standardized as in Shafer and Doswell (2011; see also Table 1 and Fig. 3). All events with total report numbers or report densities below the mean values of the events for the particular year are excluded.

•The remaining events are ranked using a multivariate linear-weighted index (as in Shafer and Doswell 2011 – see also Fig. 3). Several indices are developed to quantify the variability among the rankings (e.g., Figs. 1, 2, and 7). Results consistently indicate long-duration major tornado outbreaks are ranked highest (Figs. 4 and 5; Tables 2 and 3).

Identifying and Ranking Multi-Day Severe Weather Outbreaks Chad M. Shafer¹ and Charles A. Doswell III² Department of Earth Sciences, University of South Alabama, Mobile, AL ² CIMMS, University of Oklahoma, Norman, OK

multivariate index (legend) as a function of outbreak ranking for each index. (b) As in (a), zoomed in to scores between -1 and 2. (c) As in (b), except scores for each index are indicated as a function of the outbreak rankings for the N15 index.

Figure 2: Rankings of the outbreaks for each linearweighted multivariate index (y-axis) as a function of the outbreak's N15 ranking (from lowest rank number to highest rank number; x-axis).

This work is sponsored by NSF Grant AGS-0831359.

Total number of severe reports Total number of tornadoes* Total number of hail reports* Total number of wind reports* Total number of significant hail Total number of significant wind Total number of significant tornadoes* Total number of violent tornadoe Number of long-track tornadoes Number of killer tornadoes **Destruction Potential Index** Total path length Fatalities Report density*

variable was detrended. Report density (DEN) was

Table 1: Variables used for ranking the

severe weather outbreaks in this study.						
Variable	Abbreviations used in subsequent tables					
Total number of severe reports*	ALL					
Total number of tornadoes*	TORN					
Total number of hail reports*	HAIL					
Total number of wind reports*	WIND					
Total number of significant hail reports*	SIGH					
Total number of significant wind reports*	SIGW					
Total number of significant tornadoes*	SIGT					
Total number of violent tornadoes*	VIOT					
Number of long-track tornadoes	LTT					
Number of killer tornadoes	KT					
Destruction Potential Index	DPI					
Total path length	TPL					
Fatalities	FTL					
Report density*	DEN					

	NO		N13	N	14]	N15		N16		N25
20110426_15_1_1	18.83	20110426_15_1_1	27.38	20110426_15_1_1	26.15	20110426_15_1_1	26.03	20110426_15_1_1	25.02	1 20110426_15_1_	1 20.42
19740403_12_1_1	16.53	19740403_12_1_1	21.44	19740403_12_1_1	20.33	19740403_12_1_1	20.60	19740403_12_1_1	19.52	220110521_18_1_	2 12.59
20110521_18_1_2	11.28	20110521_18_1_2	11.79	20110521_18_1_2	11.77	20110521_18_1_2	12.20	20110521_18_1_2	12.13	3 20030429_18_1 _	2 12.40
20030429_18_1_2	10.88	20030429_18_1_2	10.88	20030429_18_1_2	10.70	20030429_18_1_2	10.67	20030429_18_1_2	10.88	8 19740403 12 1	1 11.32
19650411_15_1_1	7.90	19650411_15_1_1	9.33	19650411_15_1_1	8.88	19650411_15_1_1	8.92	19650411_15_1_1	8.14	420040520_21_1_	3 9.86
20040520_21_1_3	7.00	20110414_15_1_1	8.36	20110414_15_1_1	8.18	20110414_15_1_1	8.03	20110414_15_1_1	7.89	20080522_15_1_	1 7.32
19920615_15_1_2	6.01	19921121_18_1_1	8.26	19921121_18_1_1	8.04	19921121_18_1_1	7.77	19921121_18_1_1	7.62	20040529_18_1_	1 6.85
20040529_18_1_1	5.43	20040520_21_1_3	7.00	20080204_24_1_1	6.53	19990503_21_1_4	6.29	19990503_21_1_4	6.35	519920615_15_1_	2 6.78
19990503_21_1_4	5.35	20080204_24_1_1	6.55	19990503_21_1_4	6.52	19920615_15_1_2	6.28	20080522_15_1_1	6.34	420050602_18_1_	3 6.42
20110414_15_1_1	5.32	20021109_24_1_2	6.36	19920615_15_1_2	6.24	20080204_24_1_1	6.27	19920615_15_1_2	6.29	<mark>19960419_21_1</mark> _	1 6.26
20030507_18_1_2	5.00	19990503_21_1_4	6.23	20080522_15_1_1	6.20	20080522_15_1_1	6.24	20080204_24_1_1	6.28	<u>3 19940424_33_1_</u>	1 5.68
19921121_18_1_1	4.96	20060310_24_1_3	6.18	20021109_24_1_2	6.09	20060310_24_1_3	6.13	20040520_21_1_3	5.98	<u>320030507_18_1_</u>	2 5.58
20080522_15_1_1	4.92	20080522_15_1_1	6.09	20060310_24_1_3	5.92	20021109_24_1_2	6.10	20060310_24_1_3	5.89	919930606_24_1_	1 5.49
20021109_24_1_2	4.76	19920615_15_1_2	6.01	19730526_15_1_2	5.73	20040520_21_1_3	5.84	20021109_24_1_2	5.87	720110612_33_1_	2 5.46
20060310_24_1_3	4.64	19730526_15_1_2	5.76	20040520_21_1_3	5.62	20030507_18_1_2	5.53	20030507_18_1_2	5.64	420110414_15_1_	1 5.45
19960419_21_1_1	4.62	19850531_18_1_1	5.53	20030507_18_1_2	5.59	19730526_15_1_2	5.49	19730526_15_1_2	5.47	7 19950515_18_1_	2 5.37
19930606_24_1_1	4.62	20030507_18_1_2	5.44	19850531_18_1_1	5.20	19850531_18_1_1	5.30	20100616_12_1_1	5.13	3 <u>19950605_15_1_</u>	2 5.25
20080204_24_1_1	4.61	20040529_18_1_1	5.43	20100616_12_1_1	5.01	20100616_12_1_1	4.96	19850531_18_1_1	5.00)19990503_21_1_	4 5.15
20050602_18_1_3	4.55	19900312_21_1_1	5.02	19900312_21_1_1	4.98	19900312_21_1_1	4.80	20040529_18_1_1	4.90)19960525_15_1_	1 5.02
20100616_12_1_1	4.38	19910425_21_1_2	4.67	19970228_18_1_1	4.93	20040529_18_1_1	4.78	19900312_21_1_1	4.79	20100616_12_1_	1 5.00
19730526_15_1_2	4.28	19970228_18_1_1	4.62	19910425_21_1_2	4.73	19930606_24_1_1	4.68	19930606_24_1_1	4.75	520100423_15_1_	1 4.83
19950515_18_1_2	4.21	19960419_21_1_1	4.62	19930606_24_1_1	4.72	19970228_18_1_1	4.67	19910425_21_1_2	4.72	2 19650411_15_1_	1 4.73
19940424_33_1_1	4.17	19930606_24_1_1	4.62	20070504_18_1_2	4.70	19910425_21_1_2	4.66	19970228_18_1_1	4.60	519980529_24_1_	3 4.68
19950605_15_1_2	4.13	20070504_18_1_2	4.60	20040529_18_1_1	4.68	20070504_18_1_2	4.53	19960419_21_1_1	4.58	8 19921121 18 1	1 4.59
20110612_33_1_2	4.02	20050602_18_1_3	4.55	19990120_33_1_1	4.49	19600505_18_1_2	4.36	20070504_18_1_2	4.55	520060310_24_1_	3 4.48

—Percentage of Outbreak Cases Up to Duration Indicated —Percentage of Outbreak Cases Versus Maximum

Figure 5: Percentage of cases with a given duration (xaxis) versus the duration with the maximum number of cases (red curve), and percentage of cases with durations less than or equal to the given duration (blue curve).

77

Table 2 (above): The top 25 severe weather outbreaks for the N0, N13, N14, N15, N16, and N25 indices, and their associated index scores. Some cases are highlighted for convenience. Case IDs are described in the text.

Table 3: The top 25 severe weather outbreaks for the N15 index, and their associated durations (h).

10426_15_1_1	66	20021109_24_1_2	72
40403_12_1_1	42	20040520_21_1_3	186
10521_18_1_2	138	20030507_18_1_2	111
30429_18_1_2	216	19730526_15_1_2	9(
50411_15_1_1	33	19850531_18_1_1	18
10414_15_1_1	66	20100616_12_1_1	150
21121_18_1_1	48	19900312_21_1_1	63
90503_21_1_4	111	20040529_18_1_1	132
20615_15_1_2	141	19930606_24_1_1	90
80204_24_1_1	57	19970228_18_1_1	78
80522_15_1_1	144	19910425_21_1_2	45
60310_24_1_3	84	20070504_18_1_2	93
		19600505_18_1_2	45

indicates the time (in hrs) that grid point was function magnitude exceeding 5*10⁻⁶ km⁻². (c)-(d) As