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I. Multiple Vortices in Tornadoes
*Tornadic vortices are frequently seen to exhibit “multiple vortices.”

These structures can appear on a range of scales:

“multiple-vortex tornado” “suction vortices”

Figure |. Ellis County, OK tornade of May 4, 2007. Photos
courtesy of Reed Timmer and Joel Taylor of TornadoVideos.net.
Image (a)is from approximately | km away, a few minutes

(from Rotunno 20 1 3) before the viewing at approximately 100 m In the (b) Image.

Suction vortices are evident at the base of the condensation

Figure 4

An example of a muldple-vortex tornado. Photograph courtesy of H.B. Bluestein.

funnel.

(from Fiedler 2009)



I1. Prior Work

* What are the mechanics of this instability? How does it extract energy?

We often try to answer such questions by linearized stability analysis:

[+
Fic. 7. Structure of the two most unstable modes at the 45.7 m level. Dashed curves show o for n=3.4 and the
mode (inner) resulting from departure from ¥ =constant x r inside the wind maximum (see curves a in Fig. 4).
Solid curves show ¢ for »=2.4 and the mude {(vuter) resulting from departure from V= & /r outside the wind max-
imum (see curves b in Fig. 4). Units are arbitrary, Radial distance is indicated by the index j, with maximum
wind, as indicated by the large curved arrow, at j=7.

Staley and Gall (1979)
v(r\,z,t) = V(r) + vn(r)e’(”k'wt)

u(rhz,f) = u, (r)e =00

ber 4, vertical wavelength 200 cm, and swirl ratio § = 1.4,

Gall (1983)

v(r, Mz, t) = V(r) + vn(lf)ei(kZJr nA-o1)
M(I’;)»,Z, f) _ un(r)e i(kz+nh-wt)

w(rhz, ) = W(r) + w,(r)e k-0



Walko and Gall (1984):
u(r,\,z,t) = U(r,z) tu,(r,z)e ,

i(nh— of)

i(nh— o)

v(r,h,z,t) = V(r,z)+ v, (r,z)e ,

w(r,\,z, t) = W(r,z) +w,(r,z)e
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Fic. 2. Radial-height cross sections showing, from left to right, the radial,
azimuthal, and vertical components of the steady-state axisymmetric velocity field
for § = 1.0 and » = 10.0 cm® s~'. The center axis of the TVC corresponds to the
left edge of each picture, and the inflow port is indicated on the' right. Dashed
contours represent negative values, with zero corresponding to the first solid line.
The contour intervals for the pictures are 0.04, 0.05 and 0.1, respectively, in m s™".
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FiG. 7. As in Fig. 6 but showing w' (left column) and p' for the same case. The contour interval for w' is the same as that
used for 1" and v, and p' uses the same contour interval at all levels.



*The Walko and Gall (1984) energy analysis shows how the modes vary with

wavenumber and swirl:

o [ Eraravae = [ [ [ {[rC - 50) ] + (w57, + (e 5 - )
a{f E'rdrdodz = av’r r I+ uwar2+ uu' = u’u‘ua
. r@ __r;_a_‘:‘} _rla_i?
+(—v’w dz)4+( w'w ﬂz)5+( w'u 6‘z)6

+ (W'F, + vFy + w'F,)g}rdrdidz + f f {[(—WE"Yrop]s + [(— p'W'/p)ropls } rdrdb.

low swirl --> energy comes from (2): dW/dr

high swirl --> energy comes from (1): dV/dr
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FIG. 9. Histograms showing the contributions of eight individual sources (or sinks) of energy
for the linear perturbations as a function of swirl ratio and wavenumber. The small square
within each histogram serves to locate the proper positions on the coordinate axes. The height
of any bar indicates the contribution to the total perturbation growth rate with the small
increments on vertical axis denoting units of 0.1 s™'.

But - WG84 used a free-slip lower BC. No inflow jet, no localized wind max.



* What came next?
This paper (1984) was the last to study modes in a vertically varying vortex!

Some questions:

* Are the modes similar if we have a more realistic boundary layer?

* WG84 1s a stability analysis of asymmetric modes on an axisymmetric flow.
What if we use the time-mean of a 3D simulation instead?

* What about symmetric modes?

*We seek to perform a fully “self-consistent” stability analysis
of the time-mean of a 3D tornado-like vortex, with a frictional
boundary layer and secondary circulation.



I11. Basic-State Flows

*For U, V, and W, we use time-azimuthal mean flows from the more recent

three-dimensional simulations by Brian Fiedler (2009):

one-celled vortex

Mean V and [U,W], max=1.00, min=-0.04, int=0.10, max vector=1.64
1

(b)

My=-] |:_:’
p=-2.0

v =0.0004

drowned vortex jump (DVJ)

Mean V and
1

[U,W], max=0.92, min=-0.10, int=0.10, max vector=0.64

two-celled vortex

Mean V and [U,W], max=1.03, min=-0.04, int=0.10, max vector=0.67
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IV. Linearization and Discretization

*The incompressible equations of motion are linearized about the mean states
U(r, z), V(r, z), W(r, z) to make linear equations for u,, v,, w,, p,,.

*The equations are discretized by finite differences on stretched, staggered grids:

Gridpoint Locations, nr=41, nz=41, ocr=0.2, csr=0.5, ocz=0.2, csz=0.25
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V. Results

*For each matrix T,, Matlab can provide all the eigenvalues and eigenvectors,
each of which evolves as:

v(r,z, A t) = v (7, Z)e”eim where s is the complex eigenvalue (s <> —i®)

so eigenvalues with largest real part indicate the “most unstable mode.”

Growth Rates vs. Wavenumber
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Most Unstable Mode: One-Celled Vortex

(perturbation pressure shows axes of vortical motion)

Pert. Pressure = 0.075 and -0.075 Isosurfaces Pert. Pressure = 0.075 and -0.075 |sosurfaces Pert. Pressure = 0.08 and -0.08 Isosurfaces
1 1 1
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0.8 0.8 0.8
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-0.2 02 -01 0 0.1 : -0.2 02 -01 0 0.1 02 -0.2 02 -0.1 0 0.1 02
Y X bj X Y X
n=1 n=>2 from nonlinear simulation

*Results: 7 =1 1s the dominant asymmetry
n =2 1s close behind, so may occasionally appear

Upward flow 1s supercritical: asymmetric modes can not reach the surface!



Most Unstable Modes: Drowned Vortex Jump

Pert. Pressure = 0.125 and -0.125 Isosurfaces Pert. Pressure = 0.075 and -0.075 Isosurfaces Pert. Pressure = 0.08 and -0.08 |sosurfaces
1 1 o
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0.8 0.8~ 0.8
0.7 0.7 - 0.7 ~
0.6 0.6 0.6
n 05 N 0.5 ~ 0.5
0.4 0.4 0.4
0.3 0.3+ 0.3
0.2 0.2 - 0.2 -
0.1
0.1~ 0.1
0 0
0l2 &:\—%ﬂ 0‘-: h
-0.2 02 01 0 01 02 -0.2 02 -01 0 01 02 -0.2 02 -01 0 01 02
Y % Y X Y X
n=1 n=>2 from nonlinear simulation

*Results: low-level n = 1 mode dominates, and causes vortex “wandering”
Some n = 2 activity aloft.

n =2 shows transition from “barotropic” to “spiral” structure.
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Most Unstable Modes: Two-Celled Vortex

Pert. Pressure = 0.05 and -0.05 Isosurfaces
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from nonlinear simulation

*Results: 7 =2 mode dominates with “low and tight” spirals
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13
Mode Energetics

*We can derive an equation for perturbation kinetic energy change:

L[] [ [l ]
vr or Ly or vy,

——0v —— 0w ~—u T B
[vw GZLZJF [ww EJWZ+ [uw aZLZ+ [u'F,' +VEF,"+wWF, ]F}andm’z

Each of these terms 1s a momentum flux across a wind shear.
If we integrate by parts, we can find a more intuitive form:

aE' ”{[ 2ar(’” u'v ')J +[W%%(Vu'w')}wr+[ ( (u'”')+‘%>Jur+

o —0 o
1o + T + 1o + [y F "+ vVE '+ wWF"
|: aZ(VW):|VZ |:WaZ(WW):|WZ |: aZ(l/l W):|MZ [MF’, VF?\, WFZ ]F}Zﬂ:rdrdz

Each of these terms is a eddy tendency (by the waves) acting on a mean velocity:

OE OE o8 L IR
ot~ ot 25r
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We can plot the dominant energy terms for modes of interest:
n =1, one-celled n=2,DV] n =2, two-celled

wr, n=1 frac=31%, max=3.73e+00, min=-4.43e-01, int=4.64e-01 wr, n=2 frac=44%, max=2.21e+00, min=-1.73e+00, int=4.37e-01 vz, n=2 frac=47%, max=1.26e+01, min=—1.62e+01, int=3.20e+00
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*Results: The wr and wz terms are the dominant energy source for asymmetric modes.
vz also large for the two-celled vortex.

The radial shear of tangential wind is never significant! (max 1.4%)



Symmetric Modes

>> load FO9 onecell R2/F09 161x161n0
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-+—— Most unstable eigenvalue

First 20 eigenvalues

*The complex modes are always matched with a complex conjugate.

The imaginary parts always exactly cancel.



But, the structure of the symmetric mode evolves in time:

v,~Re{v,} > Im{v,} > —-Re{v,} > —-Im{v,}.

reaI[vO] and real[uo,wo], max=6.8e-01, min=-1.0e+00, int=1.0e-01 maxvec=8.5e-01 imag[vo] and imag[uo,wo], max=6.8e-02, min=-1.2e-01, int=1.0e-01 maxvec=2.3e-01
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These modes represent symmetric oscillations of the inner-core.



Maximum Azimuthally Averaged Azimuthal Wind
and Radius of Maximum Wind
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FiG. 6. Estimated diameter (m) of the low-reflectivity eye of the

Fic. 1. The UMass W-band radar collecting data in the Stockton, KS, tornado. The view is
to the northwest, and the truck is facing east. (Photograph courtesy of H. Bluestein.) Stockton tornado as a function of time.
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*How can we tell if our symmetric modes are similar to the observed?

One way 1s to compare time scales.

One-celled vortex: circulation time scale = 1_; ..

Bluestein (2003):

Tanamachi (2007):

_ 21 x RMW _ 21 x 0.05
V 1.0

max

= 0.32

mode period = 2T 1.8 %37 x Tpire

T

S

2 xRMW _ 21 x200m

= 50s

V 25m/s

max

mode period = 1 -2 minutes~ 1 —2 x 7, .

T

_ 21t x RMW _ 271 x 60m _ 9

cire V 40m/s

max

mode period = 1 —2 minutes 7 — 14 x 1_;,..

But: Radar analyses smooth out RMW and underestimate V..

So real values of t

circ

may be much smaller, leading to a better match with the mode.
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Summary

Linearized stability analysis predicts the dominant asymmetric structures of
a fully nonlinear simulation.

*The primary growth mechanism is extraction of energy from the vertical deformation
of the flow - not the radial shear of tangential wind.

* Weakly unstable symmetric modes may explain symmetric oscillations that
recently have been observed.



All the details and more can be found in:

J. Fluid Mech., page 1 of 40. © Cambridge University Press 2012 1
doi:10.1017/jfm.2012.369

Three-dimensional instabilities in tornado-like
vortices with secondary circulations
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Tornadoes and other intense atmospheric vortices are known to occasionally transition
to a flow structure with multiple vortices within their larger circulations. This
phenomenon has long been ascribed to fluid dynamical instability of the inner-core
circulation, and many previous studies have diagnosed low-wavenumber unstable
modes in tornado-like vortices that resemble the observed structures. However,
relatively few of these studies have incorporated the strong vertical motions of the
inner-core circulation into the stability analysis, and no stability analyses have been
performed using a complete, frictionally driven secondary circulation with strong
radial inflow near the surface. Stability analyses are presented using the complete
circulations generated from idealized simulations of tornado-like vortices. Fast-growing
unstable modes are found that are consistent with the asymmetric structures present
in these simulations. Attempts to correlate the structures and locations of these modes
with instability conditions for vortices with axial jets derived by Howard & Gupta
and by Leibovich & Stewartson produce only mixed results. Analyses of perturbation
energy growth show that interactions between eddy fluxes and the radial shear of
the azimuthal wind contribute very little to the growth of the dominant modes.
Rather, the radial shear of the vertical wind and the vertical shear of the vertical
wind (corresponding to deformation in the axial direction) are the primary energy
sources for perturbation growth. Relatively weak axisymmetric instabilities are also
identified that have some similarity to symmetric oscillations that have been observed
in tornadoes.
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Symmetric Modes: Purely Real Eigenvalues

DV] most unstable symmetric mode
Mean V and [U,W], max=0.92, min=-0.10, int=0.10, max vector=0.64 reallv ] and real[u ,w], max=6.0e-01, min=-1.0e+00, int=1.0e-01 maxvec=1.0e+00
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“stationary overturning”



Eddy V Tend. int=2.1e+00

How do these modes change the mean flow?
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Eddy V Tend. int=6.0e+00
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outflow aloft is filled in;
“notch” 1s smoothed out

Mean V and [U,W], max=1.03, min=-0.04, int=0.10, max vector=0.67
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