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I. Multiple Vortices in Tornadoes

•Tornadic vortices are frequently seen to exhibit “multiple vortices.”

These structures can appear on a range of scales:

“multiple-vortex tornado” “suction vortices”

(from Rotunno 2013)

(from Fiedler 2009)
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II. Prior Work

•What are the mechanics of this instability? How does it extract energy?

We often try to answer such questions by linearized stability analysis:

Staley and Gall (1979)
v(r,z,t) = V(r) + vn(r)ei(n-t)

Gall (1983)
v(r,z,t) = V(r) + vn(r)ei(kz+n-t)

w(r,z,t) = W(r) + wn(r)ei(kz+n-t)

u(r,z,t) =            un(r)ei(n-t)

u(r,z,t) =             un(r)ei(kz+n-t)
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Walko and Gall (1984):
,

,

.

u r  z t    U r z  un r z ei n t– +=

v r  z t    V r z  vn r z ei n t– +=

w r  z t    W r z  wn r z ei n t– +=

3D Modes with Vertical Structure

U V W

Basic-State Flow from Axisymmetric Model
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•The Walko and Gall (1984) energy analysis shows how the modes vary with 
wavenumber and swirl:

low swirl --> energy comes from (2): dW/dr

high swirl --> energy comes from (1): dV/dr

But - WG84 used a free-slip lower BC. No inflow jet, no localized wind max.

U V W
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•What came next?

This paper (1984) was the last to study modes in a vertically varying vortex!

Some questions:

* Are the modes similar if we have a more realistic boundary layer?

* WG84 is a stability analysis of asymmetric modes on an axisymmetric flow.
What if we use the time-mean of a 3D simulation instead?

* What about symmetric modes?

•We seek to perform a fully “self-consistent” stability analysis
of the time-mean of a 3D tornado-like vortex, with a frictional
boundary layer and secondary circulation.
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III. Basic-State Flows

•For U, V, and W, we use time-azimuthal mean flows from the more recent
three-dimensional simulations by Brian Fiedler (2009):
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IV. Linearization and Discretization

•The incompressible equations of motion are linearized about the mean states
 to make linear equations for .

•The equations are discretized by finite differences on stretched, staggered grids:

leading to the linear dynamical systems:

asymmetric -->     and      <-- symmetric

(complex)                             (real)

U r z  V r z  W r z   un vn wn pn  

d
dt
-----

un

wn

Tn
un

wn

=
d
dt
-----

0

v0

T0
0

v0

=
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V. Results

•For each matrix Tn, Matlab can provide all the eigenvalues and eigenvectors,
each of which evolves as:

  where s is the complex eigenvalue  

so eigenvalues with largest real part indicate the “most unstable mode.”

v r z  t    vn r z estein= s i– 
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Most Unstable Mode: One-Celled Vortex

(perturbation pressure shows axes of vortical motion)

•Results: n = 1 is the dominant asymmetry

n = 2 is close behind, so may occasionally appear

Upward flow is supercritical: asymmetric modes can not reach the surface!

n = 1 n = 2 from nonlinear simulation
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Most Unstable Modes: Drowned Vortex Jump

•Results: low-level n = 1 mode dominates, and causes vortex “wandering”

Some n = 2 activity aloft.

n = 2 shows transition from “barotropic” to “spiral” structure.

n = 1 n = 2 from nonlinear simulation
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Most Unstable Modes: Two-Celled Vortex

•Results: n = 2 mode dominates with “low and tight” spirals

n = 2 n = 3 from nonlinear simulation
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Mode Energetics

•We can derive an equation for perturbation kinetic energy change:

Each of these terms is a momentum flux across a wind shear.
If we integrate by parts, we can find a more intuitive form:

Each of these terms is a eddy tendency (by the waves) acting on a mean velocity:
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We can plot the dominant energy terms for modes of interest:

•Results: The wr and wz terms are the dominant energy source for asymmetric modes.

vz also large for the two-celled vortex.

The radial shear of tangential wind is never significant!  (max 1.4%)
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Symmetric Modes

•The complex modes are always matched with a complex conjugate.
The imaginary parts always exactly cancel.

Most unstable eigenvalue

First 20 eigenvalues
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But, the structure of the symmetric mode evolves in time: 

.

These modes represent symmetric oscillations of the inner-core.

vn Re vn  Im vn  Re vn – Im vn –  
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Tanamachi et al. (2007, MWR)

Bluestein et al. (2003, MWR)
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•How can we tell if our symmetric modes are similar to the observed?

One way is to compare time scales.

One-celled vortex: circulation time scale = 

                               mode period = 

Bluestein (2003):   

                              mode period = 

Tanamachi (2007): 

                            mode period = 

But: Radar analyses smooth out RMW and underestimate Vmax.

So real values of circ may be much smaller, leading to a better match with the mode.

circ
2 RMW

Vmax
---------------------------

2 0.05
1.0

----------------------- 0.32= = =

2
si
------ 11.8 37 circ=

circ
2 RMW

Vmax
---------------------------

2 200m
25m/s

-------------------------- 50s= = =

1 2 minutes– 1 2 circ–

circ
2 RMW

Vmax
---------------------------

2 60m
40m/s

----------------------- 9s= = =

1 2 minutes– 7 14 circ–
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Summary

•Linearized stability analysis predicts the dominant asymmetric structures of
a fully nonlinear simulation.

•The primary growth mechanism is extraction of energy from the vertical deformation 
of the flow - not the radial shear of tangential wind.

•Weakly unstable symmetric modes may explain symmetric oscillations that
recently have been observed.
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All the details and more can be found in:
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Symmetric Modes: Purely Real Eigenvalues

“stationary overturning”
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•How do these modes change the mean flow?
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