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The governing dynamics of supercells has been a long- In order to examine the impact of the varying inflow environment on 9 June 2009 while still maintaining a degree of control over the experiments, r _,I,
standing area of active research, often with a focus on the a new modeling technique was developed called base-state substitution (BSS). After a certain amount of model run time, BSS replaces the originally pase-state perturbation
developing and mature stages (e.g., Rotunno and Klemp 1982; homogeneous background environment with a new horizontally homogeneous environment while maintaining perturbations that developed during ,l, ,l,
Davies-Jones 1984; Weisman and Rotunno 2000). Supercell the preceding simulation (Fig. 5). This allows the user to independently modify the kinematic or thermodynamic environments, or replace the entire rew basestate perturbation
research has recently expanded to explore the processes sounding without altering the structure of the perturbation fields. The environmental modifications can be incorporated gradually (gradual BSS) or L — J
behind weakening and dissipating supercells (Bluestein 2008; instantaneously (instant BSS). For the simulations of the 9 June 2009 supercell, the supercell was allowed to mature for 3 hours before gradual model fields
Ziegler et al. 2010), which may better inform our current environmental modifications were made, with the model restarted every 5 minutes and the environment changing a proportional amount. ]f;?loivzéhfi"r“s;‘ieosftizf&ﬁ;ﬁf&*&in

understanding of supercell maintenance. Supercell decay has
often been attributed to movement into cooler, stable air due
to corresponding increases in CIN, making it more difficult to
lift parcels to their LFCs (e.g., Bluestein 2008). However, the
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mechanisms and the ci rCt.J mstances that mhlblt ift nY of Fig. 6: Horizontal plan-view evolution of the second half of the “weakening” and “dissipated” Fig. 7: Histograms of the normalized number of updraft (w=10 m/s) parcels at 5 km Fig. 8: The difference in total vertical acceleration (for grid points greater
pa rceIS to thel I LFCS, Ieadlng to storm demISe. combination simulations. Simulated radar reflectivity is shaded, 6’is in the dashed contours every binned by parcel origin level for the combination restart simulations during the a) first than or equal to the 99t percentile of vertical acceleration, m/s2) between
2 K, and updraft helicity (calculated in the manner of Kain et al. 2008) is in the thick contours every and b) second hour after the initial restart. The number of updraft parcels for each the combination experiments and the control. The mean difference is
500 m2/s2. simulation is also listed on each panel. calculated for three 30 min increments (as labeled on the figure) after the
InﬂOW EnVirOnment environment began to be modified to demonstrate bulk changes.
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appropriately. Fig. 9: As in Fig. 6, but for the "weakening" and "dissipated" thermodynamic simulations. Fig. 10: Asin Fig. 7, but for the thermodynamic restart simulations. Fig. 11: Asin Fig. 8, but for the thermodynamic restart simulations.
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Fig. 2: SkeV\{'T log-p diagrams of the SOUHdif‘QS sampling the pear—inflovy environment 9-10 June Fig. 12: As in Fig. 6, but for the "weakening" and "dissipated" wind profile simulations. Fig. 13: Asin Fig. 7, but for the wind profile restart simulations. Note that the panels shown Fig. 14: As in Fig. 8, but for the wind profile restart simulations.
2009. The time of the launch and the storm’s degree of maturity are indicated on each panel. are for the second and third hours after the initial model restart.
The purple horizontal line in a) denotes the starting level where the sounding was modified
using data from the 2354 UTC sounding in order to have data up through the tropopause.
Vertical Profil f CAPE, CIN, LFC— I hei 9 J 2009 N5SL1 COHCIUSionS and FUture Work ACknOWIEdgements
. o L mesoooinfowHodogrephs The experiments demonstrated that the demise of the 9 June 2009 supercell was primarily due to the thermodynamic modifications to the T:e ak”[t)hO'r;\WOULd 'L'\(e to
: : : : : : . . cc: thank Drs. Anantha Aiyyer,
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Fig. 3: Vertical profiles of CAPE, CIN, & delta-z (m; Fig. 4: Hodographs from the 9 June 2009 near-| - | Additionally, given the role of drier parcels in reducing updraft buoyancy, future simulations should utilize a smaller resolution in order to more faithfully
defined as vertical distance between parcel inflow soundings , with markers placed every
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