

European Severe Storms Laboratory

Münchner Str. 20 · 82234 Wessling · Germany · www.essl.org

STEPCLIM: Severe Thunderstorm Evaluation and Predictability in Climate Models

G. Pistotnik, P. Groenemeijer, K. Riemann-Campe and T. Kühne

1. Project goal

Decadal projections of severe thunderstorm risk in Europe

2. Data material

- ERA-Interim reanalyses 1979-2011 (Fig. 1) - $(\Delta = 0.75^{\circ})$
- European Severe Weather Database (Fig. 2)
 - http://www.eswd.eu

3. Methodology and accomplished work

 Relate observed severe thunderstorm events to a parameters ("proxies") derived set of from reanalysis data (Fig. 3)

Fig. 3 (clockwise): Conditional probability of severe hail, rain, tornado and wind events in a (CAPE-, shear-) space, Europe 1979-2011

4. Next steps

- Account for underreporting of severe weather events
 - Tentative: derive analytical functions only from subdomain with reliably high reporting rate, e.g. Germany & Austria since 2004
- Expand parameter space to (x_1, x_2, \dots, x_n) and test predictive skills of further proxies

- - So far: $x_1 = CAPE$, $x_2 = 0.6$ km vertical wind shear
- Fit an analytical function to the occurrence frequency $f(x_1, x_2)$ of certain proxies
- Fit an analytical function to the probability of severe weather $P(x_1, x_2)$
- Model the expected number of severe weather events (Fig. 4)

- In particular: find a proxy for likelihood of convective initiation
- Repeat examination for MiKlip reanalysis fields to address benefit of a finer model resolution
 - MiKlip: "medium-range climate forecasts" ($\Delta = 0.22^{\circ}$) -
- Apply to MiKlip forecast data for assessment of future severe storm hazards

Corresponding author: Georg Pistotnik e-mail: georg.pistotnik@essl.org