DUAL-DOPPLER VS. ENKF WIND ANALYSES OF THE 29-30 MAY 2004 GEARY, OKLAHOMA, SUPERCELL

Corey K. Potvin^{1,2}, Louis J. Wicker², Michael I. Biggerstaff³, Daniel Betten³, and Alan Shapiro^{3,4} ¹Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma; ²NOAA/OAR National Severe Storms Laboratory ³School of Meteorology, University of Oklahoma; ⁴Center for Analysis and Prediction of Storms, University of Oklahoma

MOTIVATION

•Kinematical retrievals from mobile radar data critical to understanding supercell dynamics

•Maximizing retrievals' value requires knowledge of characteristic analysis errors

•Potvin & Wicker (2012; PW12) used OSSEs to estimate/compare wind errors from dual-Doppler analyses (DDAs) and 1- and 2radar EnKF analyses

•Present work seeks to verify PW12 conclusions using real data

APPROACH

•Dual-mobile-radar (SMART radars) observations of 29-30 May 2004 Geary supercell (Fig. 1)

•3-D wind analyses obtained using 3DVAR DDA method and EnSRF radar data assimilation

•DDA constraints: radar data, mass conservation, smoothness (all weak); w(z=0)=0 (strong)

•EnKF model: NCOMMAS with $\Delta x=1$ km, $\Delta z=200-600$ m •Assimilate Doppler velocity Vobs and "no-precip" obs •Experiments: DDA vs. 2-radar EnKF vs. 1-radar EnKF; ZVD vs. LFO microphysics; impact of reflectivity assimilation (Fig. 2) •Assume 2-radar EnKF analyses much more accurate than 1-radar EnKF analyses (use as proxy for truth)

(b)

(C)

Time (min) Time (min) Time (min) Fig. 2. Time-height plots of correlation coefficient between w from (a) 2-

LFO and 2-LFO-Z, (b) 1-LFO and 1-LFO-Z, (c) 2-LFO-Z and 1-LFO, (d) 2-LFO-Z and 1-LFO-Z. Better correspondence between 2-LFO-Z & 1-LFO than between 2-LFO-Z & 1-LFO-Z suggests reflectivity assimilation hurts 1-radar EnKF wind analysis. High correlations between 2-LFO-Z & 2-LFO indicate reflectivity assimilation has little impact on 2-radar EnKF analyses.

Fig. 1. (a) Temporal coverage of SR-1 and SR-2 data during assimilation period. (b) Data assimilation domain, radar locations, and SR-1 Z^{obs} within DDA/evaluation domain at 0033 UTC. Release location of ensemble initialization sounding used in most experiments denoted by "S1"; "S2" sounding used O instead in one set of experiments (see preprint).

(**d**)

Time (min)

Fig. 3. Left panels: horizontal winds (arrows), w (shading), ζ (magenta contours, plotted every .01 s⁻¹), and dBZ = 10 (black contour) at z = 500 m, 0033 UTC; **middle panels**: time-height plots of mean w > 20 m s⁻¹; right panels: time-height plots of mean $\zeta > .01$ s⁻¹. DDAs similar to 2-EnKF analyses. Locally large errors in 1-EnKF analyses. Choice of MP scheme has little impact on 2-EnKF analyses, bigger impact on 1-EnKF analyses. **Fig. 4.** Horizontal projections of material circuits valid *t* - 5 min. Circuits initialized at 3-km-radius ring (black circle) at (a) t = 70 min, z = 1 km, (b) t = 70 min, z = 4km, (c) t = 96 min, z = 1 km and (d) t = 96 min, z = 4 km. Trajectories were computed from the (thick solid) DDA, (thin solid) 2-LFO and (dashed) 1-LFO wind analyses. The 2-LFO dBZ (shading) and horizontal winds (arrows) valid at time/ height at which trajectories initialized are also shown. Assimilating only 1-radar data degrades trajectories and (see preprint) circulation time series.