

Impact of choices made when creating average proximity soundings: Feature versus Height averaging and moisture variable considerations

Alexander R. Zarnowski and Matthew S. Gilmore

University of North Dakota, Grand Forks, ND

Introduction

- There are two ways that previous authors have characterized a *mean* near-storm environment and both are compared herein
 - **Height averaging** of each sounding variable at a fixed altitude above ground for a group of soundings (e.g., Fawbush and Miller 1952). Smoothing. Used by Rasmussen and Straka (1998)
 - Feature averaging: among a group of soundings in certain variables (temperature, moisture, and wind) and their corresponding heights are averaged separately (Brown 1993)
- Purpose:
 - Compare the two types of compositing for different supercell classes
 - Investigate the sensitivity of results to which moisture parameter is averaged (Most previous studies averaged Td)

Methodology

1) Collect Soundings

- From Rasmussen and Straka (1998) and Beatty et al. (2009)
- HP, LP, and Classic (CL) supercell environments
- For each environmental class, both compositing techniques below are performed

2) Prepare Hodographs

• Apply proper rotation, etc. (following, e.g., Rasmussen and Straka 1998)

3) Prepare thermodynamics

- Compute theta first
- Compute each moisture variable separately prior to averaging (RH%, Td, qv, e, and, θw)

0-2 km curvature

Max Jet Level Winds

Min. Shear Feature

Fig. 1. Thermodynamic features to be averaged

Fig. 2. Hodograph features to be averaged

4) Perform Compositing for n soundings Height Averaging Technique

 Averages T (K), theta, moisture, u (m/s), and v (m/s) at each height (m; AGL) in 100m increments

 $\overline{X} = \frac{X1 + X2 + \dots + Xn}{X}$

Feature Averaging Technique

- Performed among n soundings that have the feature (following Brown 1993)
- "Features" herein may be a single point, two points describing a linear change with height, or series of points approximating a curved feature (nonlinear) in the T or u,v
- Done separately for thermodynamics and winds
- Merge thermo/winds with one another creating a single composite
- Repeated for RH%, Td, qv, e, and, θw

5) Compute Sounding Variables from Composites

- Such as CAPE, CIN, and others using a lowest-100-mb mixed-layer parcel
- 6) Plot soundings and hodographs

Fig. 3. Feature average and height average soundings for each moisture variable averaged (Td, θw , qv, e, and RH). Moisture profile (green), updraft adiabats (black) and average temperature (red) are shown.

Table 1. Sensitivity of CAPE and CIN to the moisture variable chosen for averaging: Td, θw , qv, e, and RH for both the feature-average soundings (F) and height average soundings (H).

Moisture	LP				Classic				HP			
Variable	iable CAP		PE CI		CA	CAPE		IN	CAPE		CIN	
Averaged	${f F}$	H	\mathbf{F}	H	\mathbf{F}	H	\mathbf{F}	H	F	Н	F	Н
RH	2426	1935	53	79	2862	2506	41	42	2432	1909	40	48
Vapor p	2182	1740	64	92	2735	2429	47	45	2466	1990	38	42
Mixing Ratio	1995	1613	75	101	2551	2275	56	53	2199	1787	54	57
Theta-w	1964	1522	76	108	2525	2245	57	54	2117	1685	59	64
Dewpoint T.	1814	1460	85	113	2486	2193	60	57	2025	1629	66	69

Results

- Compared to height-average, the feature-averaged composite results in
 - Larger CAPE and lower CIN values
 - Stronger upper-level storm-relative winds
 - Higher boundary layer moisture amounts
- Regarding which moisture variable to average
 - qv averaging in theory is best (not p and T dependent)
 - RH averaging larger CAPE values and lower CIN values
 - Td averaging lowest CAPE values and largest CIN values

Fig. 4. Feature and height averaged hodographs with dot being corresponding Bunkers storm motion; LP (red), CL (black), HP (green).

Conclusion and Future Work

- Supercell modelers should use RH averaging when compositing if they are concerned about having large CAPE and minimal CIN
- Run simulations with the composite soundings in the Cloud Model 1 for each classification and technique

Acknowledgements

This work was supported by NSF grant AGS-0843269. Computational resources were provided by the Texas Advanced Computing Center through XSEDE allocation TG-ATM100048.

References

- Beatty, Kyle, E. N. Rasmussen, and L. R. Lemon, 2009: The supercell spectrum. Part II: A semi-objective method for radar classification of supercell type. *Electronic J. Severe Storms Meteorology*, **4(1)**, 1-12.
- Brown, Rodger A., 1993: A compositing approach for preserving significant features in atmospheric profiles. *Monthly Weather Review*, **121**, 874-880.
- Bunkers, Matthew J., Brian A. Klimowski, Jon W. Zeitler, Richard L. Thompson, and Morris L. Weisman, 2000: Predicting Supercell Motion Using a New Hodograph Technique. *Wea. Forecasting*, **15**, 61–79.
- Fawbush, E. J., and R. C. Miller, 1952: A mean sounding representative of the tornadic airmass environment *Bull. Amer. Meteor. Soc.*, **33**, 303–307.
- Rasmussen, E.N., and J. M. Straka, 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Monthly Weather Review, 126, 2406-2421.