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1. INTRODUCTION 
 

Evaluation of severe weather diagnostic 
variables (SWDVs) has been conducted in 
numerous studies in the past few decades, to 
determine the accuracy and skill with which 
these variables identify and/or distinguish severe 
weather environments.  Most of these studies 
have focused on discrimination of tornadic and 
nontornadic supercells (e.g., Rasmussen and 
Blanchard 1998; Rasmussen 2003; Thompson 
et al. 2003), convective mode (e.g., Doswell and 
Evans 2003; Dial et al. 2010), or outbreak type 
(e.g., Mercer et al. 2009; Shafer et al. 2010a,b; 
2012).  Several SWDVs have been proposed to 
distinguish these environments, including the 
bulk wind differential, convective available 
potential energy (CAPE), storm-relative 
environmental helicity (SREH; Davies-Jones et 
al. 1990), energy-helicity index (EHI; Hart and 
Korotky 1991), supercell composite parameter 
(SCP; Thompson et al. 2003), and significant 
tornado parameter (STP; Thompson et al. 
2003), among many others. 

 
These severe weather discrimination studies 

necessarily have used conditional datasets, 
owing to the difficulties in identifying meaningful 
null cases, classifying severe weather 
phenomena, archiving severe weather 
information, etc.   Moreover, many severe 
weather discrimination studies do not assess the 
uncertainty associated with such diagnoses.  As 
discussed by Doswell and Schultz (2006), this  
 
 

 
*Corresponding author address:  Chad M. 
Shafer, Univ. of South Alabama, Dept. of Earth 
Sciences, 5871 USA Drive North Room 136, 
Mobile, AL, 36688-0002; e-mail 
cmshafer@usouthal.edu  

 
has led to the use of many SWDVs despite an 
incomplete assessment of these variables, 
particularly the uncertainty associated with their 
usage, and an unclear interpretation of their 
magnitudes, particularly those variables that 
have no obvious physical meaning (so-called 
indices, such as EHI, SCP, and STP). 
 

This study proposes a method to evaluate 
SWDVs in the discrimination of severe weather 
by determining the skill with which preselected 
SWDV magnitudes identify regions with 
threshold probabilities of severe weather of a 
specific type or of any type.  The probabilities 
that severe weather occurs at a given point are 
determined using the practically perfect (PP) 
technique introduced by Brooks et al. (1998).  
The PP technique attempts to account for the 
spatial and temporal errors and uncertainties 
associated with the observations of severe 
weather and the expectation of false alarms and 
misses of, for example, SPC convective 
outlooks and watches and NWS warnings.  
Additionally, this study attempts to quantify the 
sensitivity of these diagnoses to the time period 
of analysis and to various qualifying criteria for 
event consideration.  The specifics regarding 
these sensitivities are discussed in the following 
section.   

 
2. DATA AND METHODS 

 
Each day from 1 January 2001 to 31 

December 2010 is considered for evaluation of 
the SWDVs.  North American Regional 
Reanalysis (NARR; Mesinger et al. 2006) data 
are used to determine the SWDV magnitudes for 
each grid point in a 40-km x 40-km Lambert 
conformal domain encompassing the 
conterminous United States.  Only grid points in 
which severe weather was observed from the 
1979–2010 period were assessed.  Each SWDV 
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Figure 1:  Grid points in which the SCP exceeds a preselected threshold and the threshold PP probability 
is not exceeded (blue), the SCP does not exceed a preselected threshold and the threshold PP 
probability is exceeded (red), and both thresholds are exceeded (orange) for the 12 March 2006 tornado 
outbreak.  SCP and PP probability thresholds are (a) 1 and 0.02 and (b) 10 and 0.12. 
 
is evaluated four times:  (1) for each grid point 
on each day in the 10-y period (hereafter, 
unconditional), (2) for each grid point on days in 
which the type of severe weather being 
assessed is observed (hereafter, conditional), 
(3) for each grid point in which convection is 
observed on each day in the 10-y period 
(hereafter, unconditional – convection required), 
and (4) for each grid point in which convection is 
observed on days in which the type of severe 
weather being assessed is observed (hereafter, 
conditional – convection required).  For this 
study, four SWDVs are evaluated:  0-1 km EHI, 
0-3 km EHI, SCP, and STP. 

 
The PP technique uses a nonparametric 

density function with a Gaussian kernel.  This 
technique was conducted seven times:  for any 
type of severe report, for any severe wind, hail, 
or tornado report, and for any significant wind 
(65+ kts), significant hail (5+ cm diameter), and 
significant tornado [(E)F2+] report.  Reports are 
collected from the Storm Prediction Center 
severe weather database (Schaeffer and 
Edwards 1999).  The kernel density function is 
as follows: 

 

  ∑
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where di is the distance of the ith report to the 
grid point of interest, N is the total number of 
reports in the given time period, and σ is the 
bandwidth.  The bandwidth is associated with 

the confidence in the location of the report (see 
Brooks et al. 1998), which in this study is 
selected to be 120 km.  This selection is 
consistent with past studies (Brooks et al. 1998; 
Brooks et al. 2003; Doswell et al. 2005; Shafer 
and Doswell 2011), where attempts are made to 
mimic characteristic regions outlined in SPC 
convective outlooks.  The approximate 
probability density function (PDF) in (1) is 
converted to a probability of at least one report 
observed in the grid point of interest.   
 

Preselected SWDV magnitudes and 
threshold PP probabilities are compared (see 
examples in Fig. 1).  For points in which both 
values are exceeded (neither value is 
exceeded), the grid point is considered a hit 
(correct null).  For points in which the threshold 
probability is exceeded but the SWDV 
magnitude is not, the grid point is considered a 
miss.  For points in which the SWDV magnitude 
is exceeded but the threshold PP probability is 
not, the grid point is considered a false alarm.  
Binary contingency statistics (Wilks 2006) are 
computed based on these categorizations.  The 
PP probability for which the maximum Heidke 
skill score (HSS) is observed for a given 
magnitude of the evaluated SWDV is the 
probability assigned to that SWDV magnitude. 

 
Finally, the methods discussed above are 

evaluated for 24-, 12-, 6-, 3-, and 1-h time 
periods.  For the 6+-h time periods, the 
maximum SWDV magnitude is used for 
evaluation; otherwise, the initial SWDV 
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magnitude is used for evaluation.  In summary, 
this study is attempting to quantify the 
sensitivities of the PP probabilities for a given 
SWDV magnitude to (1) the choice of SWDV, (2) 
the length of time of the diagnosis, (3) the type 
of severe weather, and (4) the predetermined 
qualifying conditions required for a grid point’s 
evaluation.  Other sensitivities not tested here 
include the selection of bandwidth and the grid 
spacing of the domain, which are currently being 
investigated (Section 4). 

 
3.  RESULTS 
 
3.1 Statistics for Severe Report Variables 
 

The maximum skill scores and the threshold 
PP probabilities unsurprisingly are sensitive to 
the severe weather report type being evaluated 
(Figs. 2 and 3).  Using SCP as an example, the 
12-h assessment indicates the threshold PP 
probabilities for which the maximum HSS was 
observed exceed 60% for SCP magnitudes near 
50 for any report type, are approximately 50% 
for hail and wind reports, and range from 10-
20% for tornadoes and all significant severe 
weather types.  Thus, as expected, the 
probabilities for the rarest events are lowest.  
However, the maximum skill scores are highest 
for the rarest types of events for the largest 
magnitudes of SCP (Figs. 2c,d).  Additionally, 
HSSs appear to be higher for hail reports than 
for wind reports, which is likely an indication that 
SCP is identifying supercell environments (which 
have a propensity for producing significant hail 
and tornadoes) versus linear convection (which 
can produce a relatively large number of 
significant wind reports). 

 
For threshold PP probabilities as a function 

of SCP magnitude, there is very little difference 
between the unconditional and conditional data 
sets (cf. Figs. 2a,b).  For maximum HSSs as a 
function of SCP magnitude, on the other hand, 
there are considerable differences.  Notably, the 
maximum HSSs are higher and occur at lower 
SCP magnitudes for the conditional versus the 
unconditional data set (cf. Figs. 2c,d).  That is, if 
it is known that severe weather of a particular 
type will occur on a given day, the identification 
of locations exceeding threshold PP probabilities 
of that report type is done with increased skill.  
The tendency for higher maximum HSSs at 
lower SCP magnitudes suggests that the largest 
improvement in HSS occurs at the lowest 
threshold PP probabilities, which is confirmed 

when comparing HSSs to threshold PP 
probabilities (cf. Figs. 2e,f).  This is indicative of 
decreasing the number of false alarms by 
eliminating days in which severe weather of the 
relevant type is not observed. 

 
The 3-h evaluation indicates very similar 

trends to that of the 12-h evaluation (see Fig. 3).  
The threshold PP probabilities and the maximum 
HSSs are slightly lower for the 3-h evaluation 
than for the 12-h evaluation (cf. Figs. 2a-d; 3a-
d).  The relatively high HSSs of the tornado and 
significant tornado reports to other types of 
severe weather are increasingly pronounced for 
3-h forecasts.  For the 12-h and 3-h evaluations, 
differences in the unconditional versus 
conditional data sets show up as increased 
threshold PP probabilities for high SCP 
magnitudes and increased maximum HSSs for 
low SCP magnitudes.  Finally, all of the 
aforementioned trends as a function of severe 
weather report type are observed for EHI and 
STP as well (not shown). 

 
3.2 Statistics for Varying Time Periods  

 
The maximum skill scores and the threshold 

PP probabilities are also strongly sensitive to the 
time period of assessment (Figs. 4 and 5).  The 
likelihood of an event increases with an 
increased time window.  Thus, as anticipated, 
the threshold PP probabilities and maximum 
HSSs are highest for 24-h diagnoses and 
decrease considerably for 1-h diagnoses.    
Maximum HSSs decrease substantially for a 
given PP probability from the 24-h to 1-h time 
periods. 

 
Comparing the assessment of any severe 

report type to that for tornadoes, the threshold 
PP probabilities are considerably lower, the 
maximum HSSs are somewhat lower, and the 
differences between the conditional and 
unconditional data sets are more pronounced for 
the tornadoes than when including any type of 
severe report.  Other trends include the increase 
in 0-3 km EHI magnitude for which the maximum 
HSS is observed for decreasing time window 
(see Figs. 5c,d), particularly for the unconditional 
data set (where false alarms are more prevalent) 
and the narrowing of the range of probabilities 
and maximum HSSs for the conditional dataset 
compared to the unconditional dataset.  
Specifically, for tornado reports, maximum HSSs 
decrease by more than 0.15 from 24-h to 1-h 
diagnoses for the unconditional dataset (Fig. 5c) 
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Figure 2:  (a)  Threshold 12-h PP probabilities determined using the maximum HSS for a given magnitude 
of SCP for all days from 1 January 2001 to 31 December 2010 for each type of severe report (legend).  
(b)  As in (a), for all days from 1 January 2001 to 31 December 2010 in which the report type evaluated is 
observed.  (c)-(d)  As in (a)-(b), except the 12-h maximum HSSs as a function of SCP magnitude are 
shown.  (e)-(f)  As in (a)-(b), except the 12-h maximum HSSs as a function of the threshold PP 
probabilities (for SCP) are shown. 
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Figure 3:  As in Fig. 2, for 3-h diagnoses. 
 
and by less than 0.1 for the conditional dataset 
(Fig. 5d).  Additionally, the most substantial 
improvement in the HSSs when comparing the 
conditional and unconditional datasets exists 
with the smallest time periods for assessment 
(i.e., 1-h diagnoses).  Whereas the HSSs 
increase by < 0.05 for 24-h conditional 

diagnoses of tornadoes, the HSSs increase by > 
0.10 for 1-h conditional diagnoses of tornadoes.  
When evaluating all types of severe weather, 
there appears to be a minor decrease in HSS 
when using the conditional dataset for 24-h 
diagnoses. 
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Figure 4:  As in Fig. 2, except for differing time periods (legend) using 0-3 km EHI for any type of severe 
report. 
 
3.3 Statistics for Varying SWDVs 
 

Shafer et al. (2012) reported the skill with 
which SWDVs could diagnose the severity of 
convective outbreaks using areal coverage.  In 
that study, they compared the areal coverage 

magnitudes of several SWDVs and noted strong 
(>0.8) correlations among SCP, STP, and EHI.  
The technique presented herein enables easy 
comparison among these SWDVs of the 
probabilities (and skill) of severe weather 
occurring in proximity to a given point.  When 
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Figure 5:  As in Fig. 4, except evaluating tornado reports only. 
 
comparing 6-h diagnoses for any severe report 
(Fig. 6), differences in HSSs for PP probabilities 
among the SWDVs increase for decreasing 
probabilities.  The relative skills of SCP and STP 
are highest for high PP probabilities, whereas 0-
1 km EHI and 0-3 km EHI exhibit relatively high 
skills for low PP probabilities.  The absolute skill 

is highest for SCP and 0-3 km EHI, in general.  
Differences in skill scores among the variables 
generally are < 0.05 for PP probabilities > 0.4, 
and are somewhat smaller for the conditional 
versus unconditional datasets.  The relative 
value of EHI increases when convection is 
required for a grid point to be considered (cf. 
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Figure 6:  Maximum HSSs as a function of PP probabilities for each SWDV (legend), for 6-h diagnoses of 
any type of severe report, using (a) each grid point on each day from 1 January 2001 to 31 December 
2010, (b) each grid point on each day in which at least one severe report is reported from 1 January 2001 
to 31 December 2010, (c) as in (a), for grid points in which convection was reported, and (d) as in (b), for 
grid points in which convection was reported. 
 
Figs. 6a,c; Figs. 6b,d), and skill scores for all 
SWDVs are slightly higher for low PP 
probabilities when considering only grid points 
where convection occurs. 
 

When considering a rarer event (e.g., 
significant hail; Fig. 7), the tendencies observed 
in Fig. 6 become more pronounced.  
Improvements in skill occur both when 
considering grid points with convection only, and 
to a greater degree, when considering only days 
in which significant hail occurs.  The 
improvement in skill for the same probability is 
substantial (between 0.1 and 0.2 for probabilities 
< 0.10) when considering only days in which 
significant hail occurs versus considering any 
day in the 10-y period.    Evidently, variables 
with deeper-layer shear variables (i.e., 0-3 km 

EHI and SCP in Fig. 7) have somewhat higher 
skill than SWDVs with emphasis on low-level 
vertical wind shear (0-1 km EHI and STP), 
though these results are typically not statistically 
significant to 95% confidence (not shown).  The 
lack of statistical significance, particularly for 
high PP probabilities, agrees with the findings by 
Shafer et al. (2012) regarding the similar 
performance in distinguishing major severe 
weather outbreaks from less significant events. 

 
3.4 Statistics for Preexisting Conditions 
 

The results in previous sections indicate 
strong sensitivity of skill to whether or not a 
severe report of the relevant type occurred on 
the day of interest and/or whether or not 
convection occurred at the grid point of interest 
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Figure 7:  As in Fig. 6, except considering significant hail reports only. 
 
during the time period of interest.  Comparison 
of 24-h diagnoses of hail and significant hail 
reports (Fig. 8) confirm these sensitivities.  
However, these sensitivities are not consistent 
among the report variables.  For example, for 
hail reports, considering days only in which 
severe hail occurs affects the skill scores as a 
function of SWDV magnitude more than whether 
or not convection is required to at a grid point 
(Fig. 8c).  For significant hail reports, the 
opposite is observed (Fig. 8d).  Conversely, for 
hail reports, considering grid points in which 
convection occurs affects skill scores as a 
function of PP probability more than considering 
only days in which severe hail reports are 
observed (Fig. 8e).  Again, for significant hail 
reports, the opposite is true (Fig. 8f). 
 

For hail reports, the consideration of only 
days in which severe hail is reported appears to 
reduce the skill observed for low SWDV 
magnitudes and appears to increase the skill 

observed for large magnitudes.  Similarly, the 
consideration of only grid points in which 
convection occurs lowers skill for a given PP 
probability for low probabilities and increases 
skill for high probabilities.  This is not observed 
for significant hail reports.  The consideration of 
only days in which significant hail occurs and 
only grid points in which convection occurs 
generally increases skill for all PP probabilities 
and SWDV magnitudes, respectively.  These 
tendencies are generally observed for any report 
type versus any significant report type, implying 
that it is the rarity of the event that is responsible 
for these tendencies. 
 
4.  DISCUSSION 
 
4.1 Sample size limitations 
 

The sensitivities reported in the previous 
section appear to be associated strongly with 
the nature of the dataset (notably, the rarity of 
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Figure 8:  As in Fig. 2, except preexisting conditions associated with the dataset (legend) are considered 
for hail reports (a,c,e) and significant hail reports (b,d,f), using STP for 24-h diagnoses. 
 
the event being considered), in addition to 
meteorological factors.  As severe reports are 
exceedingly rare in general compared to the 
number of grid points considered (even when 
considering only grid points in which convection 
occurs), sample size sensitivities are likely 

affecting the results.  An example of this 
sensitivity is the variability in the statistics and 
probabilities for high SWDV magnitudes versus 
low magnitudes (Fig. 9).  The large and 
increasing variability of the probabilities for 
which the maximum HSS is observed for large 
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Figure 9:  (a) The 24-h KDE-derived probabilities of a severe wind report for which the maximum HSS is 
observed for a given magnitude of SCP for each year or for all years in the 2001-2010 period (legend), for 
days in which a severe wind report was observed.  (b)  As in (a), except showing the maximum HSSs as 
a function of the SCP magnitude.  (c)-(d)  As in (a)-(b), except only evaluating grid points in which 
convection was observed. 
 
SWDV magnitudes is undoubtedly a result of the 
increasingly rare occurrences in which these 
SWDV magnitudes are attained.  Additionally, 
the years for which the HSSs are highest are the 
years in which large SWDV magnitudes occur 
more often (i.e., 2001, 2006, and 2008; Figs. 
9b,d).   
 

There is some evidence that seasonal 
sensitivities exist as well (e.g., Fig. 10).  For 
example, the probabilities for which the 
maximum HSSs are observed for low SWDV 
magnitudes are noticeably higher in the summer 
(June-August) than in the other seasons.  For 
high SWDV magnitudes, large variations season 
to season are observed (e.g., the large 
probabilities of wind reports in the winter for 
SCP magnitudes between 20 and 40 versus the 

low probabilities in the spring).  A general trend 
is the considerably higher HSSs and somewhat 
lower probabilities for any SWDV magnitude in 
the spring.  The relative dominance of wind 
reports in the summer (e.g., Doswell et al. 2005) 
versus the relative dominance of supercells in 
the spring (e.g., Brooks et al. 2003) may explain 
these two tendencies, given that SCP was 
introduced and identified as skillful in identifying 
supercell environments (Thompson et al. 2003).  
The tendency for probabilities to be higher for 
tornado and hail reports in the summer is not 
observed (not shown), providing further 
evidence that this sensitivity is associated with 
climatological frequencies.  Also of note are the 
relatively limited differences in statistics when 
considering only grid points in which convection 
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Figure 10:  As in Fig. 9, except assessing seasonal sensitivities (see legend). 
 
was observed in the 24-h periods, both yearly 
and seasonally.  

 
4.2 Diurnal sensitivities 

 
As sample size sensitivities appear to affect 

the yearly and seasonal statistics to some 
degree, it is appropriate to test diurnal 
sensitivities as well.  The 3-h diagnoses (1200-
1500 UTC, 1500-1800 UTC, etc.) and the 6-h 
diagnoses (1200-1800 UTC, 1800-0000 UTC, 
etc.) for any severe report indicate that such 
sensitivities are prevalent (Fig. 11).  In particular, 
there is a clear indication that skill scores as a 
function of PP probabilities are higher for time 
periods just after 0000 UTC (see Figs. 11e,f).  In 
addition, the probabilities of any severe report as 
a function of SWDV magnitude are considerably 
higher for time periods near 0000 UTC (Figs. 
11a,b).  HSSs are higher as a function of SWDV 
magnitude for time periods near 0600 UTC.  
Note that these relative maxima are consistent 

with the times near and just after peak heating, 
when severe weather is most common, 
supercellular convection is most frequent, and 
magnitudes of SWDVs tend to be largest (see 
Tables 1 and 2).  The results for specific types of 
severe weather are consistent with the findings 
for any severe report (not shown) and with the 
frequencies/tendencies of the severe weather 
report variables and SWDVs (Tables 1 and 2). 

 
4.3 Overall conclusions 

 
Initial findings of the SWDV evaluation 

described in this study suggest that many 
important considerations are required to 
determine the utility of SWDVs in severe 
weather diagnosis and the interpretation of a 
particular magnitude of a SWDV in terms of 
severe weather probabilities.  Many of these 
considerations are well-known, including the 
sensitivity of the probabilities and skill scores 
through which the probabilities are derived to the 
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Figure 11:  (a) KDE-derived 6-h probabilities of any severe report as a function of STP magnitude for 
each 6-h period and for all periods (legend) for any day in which a severe report is observed in the 2001 – 
2010 period.  (b)  As in (a), except for 3-h probabilities.  (c)-(d)  As in (a)-(b), except for HSSs as a 
function of STP magnitude.  (e)-(f)  As in (a)-(b), except for HSSs as a function of KDE-derived 
probabilities. 
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Table 1:  Number of reports and average SWDV magnitudes for all grid points in 3-h periods in which at 
least one severe report is observed in the domain, when considering all days from 2001–2010. 
 

 1200-
1500 
UTC 

1500-
1800 
UTC 

1800-
2100 
UTC 

2100-
0000 
UTC 

0000-
0300 
UTC 

0300-
0600 
UTC 

0600-
0900 
UTC 

0900-
1200 
UTC 

Any Severe 8444 14590 53848 96828 71220 30037 14659 9219 

Wind 3767 6402 24331 38923 27981 13725 7671 4837 

Hail 3663 6202 23493 45831 33979 12425 5169 3221 

Tornado 415 776 2165 4402 3357 950 478 387 

Sig Wind 287 418 1101 2428 2362 1313 734 485 

Sig Hail 119 156 711 2117 1876 508 163 87 

Sig Tor 51 62 163 356 383 156 98 51 

SCP 0.208 0.220 0.263 0.323 0.335 0.431 0.376 0.284 

STP 0.082 0.079 0.064 0.057 0.067 0.110 0.121 0.102 

0-1 km EHI 0.104 0.090 0.076 0.070 0.085 0.132 0.145 0.130 

0-3 km EHI 0.128 0.128 0.148 0.176 0.176 0.212 0.194 0.163 

 
Table 2:  As in Table 1, for each year in the dataset. 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Any Severe 24379 24476 26400 26137 26386 30723 26153 35556 27013 27130 

Wind 11288 11319 11459 11467 11728 13299 12631 16481 12807 15158 

Hail 11899 12242 13596 12880 13401 16344 12441 17404 13071 10705 

Tornado 1212 934 1376 1816 1265 1102 1098 1689 1156 1282 

Sig Wind 734 727 1033 915 971 925 711 1215 873 1024 

Sig Hail 457 452 623 576 527 660 417 691 676 658 

Sig Tor 123 96 128 131 106 123 125 207 106 175 

SCP 0.309 0.360 0.359 0.291 0.280 0.282 0.305 0.343 0.235 0.360 

STP 0.078 0.092 0.087 0.088 0.074 0.064 0.084 0.090 0.062 0.097 

0-1 km EHI 0.097 0.117 0.105 0.012 0.094 0.088 0.103 0.104 0.069 0.113 

0-3 km EHI 0.174 0.191 0.186 0.163 0.163 0.152 0.175 0.168 0.123 0.190 

 
length of time a SWDV is evaluated (and severe 
reports are considered), to the sample size of 
the report type and the SWDV magnitude (with 
increasing uncertainty associated with more 
significant severe weather and higher SWDV 
magnitudes), and to the qualifying conditions for 
evaluation.  Regarding the last point, it is evident 
that a priori knowledge of the presence or 
absence of severe weather of a particular type 
provides a considerable increase in skill in 
SWDV magnitudes identifying regions with 
probability exceedances, particularly for small 
time windows.  However, there is only a modest 
increase in the probabilities for which the highest 
skill is observed.  Additionally, knowledge of 
locations in which convection occurs appears to 
improve skill scores for a given SWDV 
magnitude or PP probability; however, PP 
probabilities for which the maximum skill score is 
observed do not increase considerably.  The 
improvement in skill appears to occur for low 
SWDV magnitudes and low PP probabilities.  

This suggests two scenarios where a priori 
knowledge of convection is helpful:  (1) 
situations with considerable uncertainty 
regarding convective initiation, despite the 
presence of sufficient environmental conditions 
for severe weather, and (2) situations with 
potentially considerable convective coverage but 
marginal SWDV magnitudes.  In the first 
scenario, if convection develops, convective 
coverage tends to remain sparse (low PP 
probabilities).  In the second scenario, densities 
of severe reports remain limited owing to a 
marginally favorable severe weather 
environment.  Thus, a priori knowledge of 
convection influences low-PP probability 
situations disproportionately.  When SWDV 
magnitudes are large and cover large areas, a 
priori knowledge of convection tends to be of 
limited value, because convective initiation tends 
to be more certain and coverage tends to be 
considerable. 
 



 

15 

Evidently, datasets with conditional criteria 
affect rarer-event statistics considerably more.  
Interestingly, using datasets with conditional 
criteria may result in lower skill scores for low-
PP probability scenarios, suggesting the relative 
lack of discriminating power SWDVs may be 
providing at these magnitudes.  Beforehand 
knowledge of days in which any severe report 
(or hail or wind reports) occurs reduces skill 
scores as a function of SWDV magnitudes for 
relatively marginal values (e.g., STP < 0.5; Fig. 
8c), whereas beforehand knowledge of where 
convection occurs reduces skill scores as a 
function of PP probabilities for marginal report 
densities (e.g., PP probabilities < 0.05; Fig. 8e).   
 

The differences in the statistics/probabilities 
among the four SWDVs are minor.  The results 
suggest the relative utility of deeper-layer shear 
variables (0-3 km EHI and SCP) to lower-layer 
shear variables (0-1 km EHI and STP) for most 
severe weather report variables, though results 
are generally not statistically significant to 95% 
confidence.  There is some evidence to suggest 
that SCP and STP (0-1 km EHI and 0-3 km EHI) 
are relatively skillful at high (low) SWDV 
magnitudes and PP probabilities.  Again, these 
discrepancies are not substantial, and overall, 
the results appear to confirm the findings of 
Shafer et al. (2012), who showed that these 
variables have statistically similar skill 
discriminating severe weather environments. 

 
Lastly, diurnal, seasonal, and annual 

sensitivities are apparent, and are associated 
strongly with sample size.  For example, 
probabilities associated with SWDV magnitudes 
for wind reports tend to be higher in the summer, 
when wind reports are at a climatological 
maximum.  Additionally, probabilities of severe 
reports tend to be higher for times of the day in 
which severe weather is most common, and skill 
scores tend to be higher just after peak heating, 
when SWDV magnitudes tend to be somewhat 
larger (cf. Fig. 11 and Table 1).  The latter may 
be associated with the nocturnal boundary layer 
wind maximum and low-level jet streams 
(Doswell and Bosart 2001), which are frequently 
present in severe weather events.  Annual 
sensitivities appear to be associated with years 
in which the number of severe weather reports is 
high or low (e.g., the relatively high skill in 2006 
and 2008; cf. Figs. 9b,d and Table 2). 

 
Secular trends are known to exist in the 

dataset (Brooks et al. 2003; Doswell et al. 2005, 

2006; Shafer and Dowell 2010, 2011).  
However, no effort was made in this study to 
ameliorate any secular trends that may exist, 
owing to the relatively short time period 
compared to the span of years in which these 
trends have been identified and the limited 
evidence of such trends in the 10-y period (see 
Table 2).  Use of longer time periods will 
inevitably lead to nonstationarity of the annual 
report totals, and as a result, nonstationary 
relationships between SWDV magnitudes and 
PP probabilities.  Detrending techniques (such 
as those employed by Doswell et al. 2006) are 
recommended for considerably larger datasets. 

 
4.4 Future work   

 
The evaluation of SWDVs in the 

discrimination of severe weather environments 
poses challenges, owing to the rare-events 
nature of severe weather, errors and uncertainty 
associated with observations of severe weather, 
uncertainties associated with sample size, 
secular trends and other nonmeteorological 
artifacts in the dataset, and the potentially 
rapidly evolving environments preceding and 
during severe weather events.  Thus, SWDVs, 
many of which have not been evaluated 
rigorously, need to be evaluated for a variety of 
time periods on a variety of spatial scales.  
Additionally, it is not readily apparent whether 
using conditional criteria to evaluate SWDVs 
generalizes in null events.  The results of this 
study suggest that many preceding studies 
using conditional datasets likely do not account 
for these null cases adequately, particularly in 
terms of the reported skill with which SWDVs 
discriminate various severe weather 
phenomena.  The evaluation of SWDVs with 
varying conditional criteria and with no 
conditional criteria is needed to describe their 
utility more accurately in operational 
environments. 

 
Although this study proposes a rigorous 

method of evaluating four SWDVs in the 
discrimination of severe weather in an attempt to 
provide a more accurate assessment of their 
utility, several challenges have not been 
investigated here, including the computation of 
PP probabilities using varying KDE bandwidths 
(which, according to Brooks et al. 1998, is 
analogous to the confidence with which one can 
pinpoint the locations of severe weather), 
varying horizontal grid spacing of the gridded 
field (e.g., the 80-km x 80-km domain used by 
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Brooks et al. 2003, which is similar to SPC 
probabilistic outlooks), the testing of alternative 
conditional criteria (e.g., grid points with nonzero 
CAPE, grid points with wet-bulb zero heights 
constraints, etc.), and the evaluation of 
diagnostic variables as forecast parameters (i.e., 
using a current value of a diagnostic variable to 
assess probabilities of severe weather at a 
future time; see Doswell and Schultz 2006). The 
main objectives of such work, in addition to that 
shown in the above sections, are to provide a 
comprehensive and objective method of 
describing a SWDV’s utility in diagnosing severe 
weather and to propose these methods as a 
means of evaluating as yet untested SWDVs for 
operational implementation.  
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