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1. Introduction

A wide breadth of work examining supercell thunderstorms has
established links between the characteristics of such storms and
their environments (see e.g., Maddox 1976; Thompson et al.
2003). Thermodynamic and wind shear data from proximity
soundings have been used to create various forecast parameters
for supercells and tornadoes including the supercell composite
parameter (SCP) and the significant tornado parameter (STP)
(Thompson et al. 2002). Most forecast parameters are limited
to assessing wind shear or instability over pre-designated lay-
ers, often condensing a two-dimensional profile into a single
quantity. Self-organizing maps (SOMs) allow for the classifi-
cation of vertical profiles of relevant thermodynamic and wind
variables, using information over the entire depth of the pro-
file. This study applies the SOM technique to RUC proximity
sounding data with the goal of determining which variables are
most effective at discriminating between nonsupercell, super-
cell, and tornadic environments.

2. Data

The self-organizing maps in this study were created using the
Rapid Update Cycle-2 (RUC-2) proximity sounding data set
collected by Thompson et al. (2003) and augmented with addi-
tional data by Thompson et al. (2007). There were 1185 prox-
imity soundings collected in the contiguous United States be-
tween April 1999 - June 2001 and January 2003 - March 2005
(fig. 1). Soundings with no surface-based convective available
potential energy (CAPE) were removed in an effort to elimi-
nate elevated supercells. Soundings were divided into four cat-
egories: Nonsupercell (NS), nontornadic (NT) supercell, where
a cyclonic mesocyclone was detected by radar, weakly tornadic
(WT) supercell, where an F0 or F1 tornado was reported, and
significantly tornadic (ST) supercell, where an F2 tornado or
greater was reported (fig. 2). Sounding data were interpolated
to 100-m AGL intervals and vertical profiles of various ther-
modynamic (e.g., relative humidity, potential temperature, sta-
bility) and wind (e.g., ground- and storm-relative wind speed,
direction, shear, helicity density, vorticity) variables were com-
puted.
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FIG. 1. The location and storm type of all 1185 RUC-2 soundings used
for this analysis.
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FIG. 2. The number of each storm type in the RUC-2 dataset.

3. Self-Organizing Maps

A self-organizing map (SOM) works by using an initialized
map of nodes that learn from the input data. The number of
nodes is user-defined and each SOM node is represented just
like the input data. Due to the SOM learning algorithm (see
Kohonen 1995), each node becomes more like the input data



to which it is closest. The node that is closest to a given input
vector is know as the best-matching unit (BMU). Over many
iterations the nodes become representative of the input data be-
cause of a neighborhood function that weights the amount of
learning depending on how close a given node is to each input
vector. SOMs are created using various thermodynamic and
wind variables. The SOMs have no information about storm
type prior to learning; the only information given to the SOM
is height level and a specified variable. Therefore, the SOMs
learn objectively and can classify storms without any informa-
tion on storm type. After the SOM is created, the profiles are
binned according to their BMU. By comparing the percentage
of storm type in a given node to the overall percentage of that
storm type we can assess how well a SOM of a given variable
discriminates between storm environments.

4. Results

4.1 3× 3 0-6 km GR wind speed SOM

Of all the variables, ground-relative (GR) wind speed per-
formed best in differentiating between all storm types. The
3 × 3 0-6 km GR wind speed SOM is shown in figure 3. The
topology of this SOM results in increasing wind speed (and
shear) from lower left to upper right. This coincides with a
transition from the NS to the ST regime. Figure 4 shows the
location and storm type of each profile corresponding to each
node. Node 7 shows a lot of NS storms which mainly occur in
the southern and eastern United States. Node 3 which includes
more ST storms due to increased 0-1 km shear, shows these
storms to occur more often in the Ohio River Valley. Figure 5
displays the time of day time of year of each profile. This figure
confirms that the seasonality of ST storms is mainly Spring and
Fall (node 3).

In order to measure how well a SOM node performs against
the entire dataset, the percentage difference between each storm
type in each node and the entire dataset is computed and plotted
in figure 6. Large positive values indicate a given storm type in
a certain node is more likely to occur as compared to the entire
dataset. The average hodographs for each node are displayed
in figure 7. Comparing nodes 2 and 3 from figure 3 show both
nodes to have similar bulk 0-6 km wind shear. Both the larger
0-1 km wind shear and curvature that is evident in the average
hodograph for node 3 as compared to node 2 is what leads to
the increased ST storms in node 3.

4.2 3× 3 0-1 km streamwise vorticity SOM

The 3 × 3 0-1 km streamwise vorticity SOM (nodes 7 and 9
shown in fig. 8) performed best in discriminating significant
tornado environments, though it was less adept at differentiat-
ing other storm types. The profiles matching node 9 are rela-
tively rare (approximately 6% of all profiles), but such profiles
are characterized by large streamwise vorticity in the lowest
500 m AGL which leads to the increases percentage of WT and
ST storms. The profiles composing node 7 have larger surface-
based CAPE (SBCAPE) on average, but the lack of low-level
streamwise vorticity and the increased crosswise vorticity as

seen by the average hodograph lead to node 7 having a lower
percentage of ST storms than node 9.

4.3 3× 3 0-6 km dθ/dz SOM

Nodes 5 and 9 from the 3 × 3 0-6 km dθ/dz SOM are shown
in figure 9. Both of these nodes have some degree of low-level
stability below 3 km. However, the profiles in node 9 tend to be
more stably stratified. Despite a similar, if not better, average
hodograph than node 5 and similar location there are very few
ST profiles in node 9. Strong surface-based convective inhibi-
tion (SBCIN) and the prevalence of overnight storms in node 9
suggest surface-based stability may be impeding tornadoes in
this regime. Enhanced 0-1 km shear in node 9 suggests some
of these profiles may be in a nocturnal low-level jet scenario.

5. Discussion and Conclusions

This study showcases the potential ability of the SOM tech-
nique in predicting supercells and tornadoes through objective
classification of storm environments based on the shape of
vertical profiles of relevant variables. The best performing
variables in terms of their ability to discriminate between all
storm types were ground-relative wind speed, storm-relative
wind speed, streamwise vorticity, ground-relative u and
v wind components, and ground-relative helicity density.
Though wind variables are generally better discriminators than
thermodynamic variables, stability variables show some skill.
The worst performing variables were wind direction, relative
humidity, and crosswise vorticity. In general, 0-6 km SOMs
were better than 0-1 km SOMs in differentiating amongst all
storm types, though some 0-1 km SOMs were better than their
0-6 km counterparts in predicting tornadoes. In addition to
predicting storm type, the SOMs also show some ability in
discerning certain weather patterns, location, and seasonal
regimes. We plan on testing the SOM method with other
height levels (0-3 km) and different numbers of nodes. We
also plan to extend the SOM technique to three dimensions,
using hodographs and profiles of dew point and temperature.
Eventually SOMs might be a useful forecasting tool wherein
real-time data can be compared with SOMs and a conditional
probability of storm type may be issued.
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FIG. 3. The 3 × 3 0-6 km ground-relative wind speed SOM where the profiles are binned according to each node. The profiles are plotted in
magenta and the average and one standard deviation is plotted in gray.
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FIG. 4: The location of the profiles corresponding to each node labelled by storm type (see fig. 1 for key).
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FIG. 5. The time of day and time of year of the profiles corresponding to each node labelled by storm type (see fig. 1 for key).
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FIG. 6. The number of each storm type binned according to node (blue bars) and the percentage difference of the number of each storm type in each
node relative to the total number of each storm type (red bars).
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FIG. 8. The profiles (magenta) and their average and standard deviation (gray) binned with nodes 7 and 9 of the 0-1 km streamwise vorticity SOM.
Similar to Figures 6 and 7, percentage difference and average hodograph are also plotted for profiles binned in nodes 7 and 9.
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FIG. 9. The profiles (magenta) and their average and standard deviation (gray) binned with nodes 5 and 9 of the 0-6 km dθ/dz SOM. Similar to
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