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1.   INTRODUCTION 

National Weather Service forecasters’ ability to provide 
advanced warning of supercell tornadoes currently relies 
heavily upon the detection (by radar or human observers) of 
strong low-level storm rotation. This “warn-on-detection” 
paradigm hinders the tornado warning process in three 
important ways. First, tornado warning lead times are 
significantly limited in cases where the onset of strong low-
level rotation precedes tornadogenesis by only several 
minutes. It is therefore not surprising that the average warning 
lead time for events in which the warning precedes the 
tornado, about 17 min, did not increase from 1986 to 2006 
(Stensrud et al. 2012). Second, the existence of low-level 
mesocyclone-scale rotation, however intense, does not 
guarantee tornadogenesis. Achieving a satisfactory probability 
of detection (POD; currently ~80 %) while maintaining 
sufficiently long warning lead times therefore results in a high 
false alarm rate (FAR; currently ~75 %). Third, much of the 
lowest 1-3 km of the atmosphere lies below the Weather 
Surveillance Radar-1988 Doppler (WSR-88D) domain 
(Maddox et al. 2002), precluding low-level radar observations 
of many storms.  The tradeoff between the POD and FAR is 
sharpened in those cases.  

These problems are mitigated under the envisioned 
“warn-on-forecast” paradigm (Stensrud et al. 2009), in which 
forecasters would utilize short-term meso- and storm-scale 
ensemble numerical weather prediction (NWP) models to 
increase tornado (as well as severe thunderstorm and flash 
flood) warning lead times and possibly reduce FARs while 
maintaining high PODs. Available computational resources 
will presumably constrain the horizontal grid spacing of initial 
operational warn-on-forecast systems to 1 km or larger, thus 
precluding direct simulation of tornadoes (thus, the second 
warn-on-detection weakness listed above may not be 
addressed by early warn-on-forecast systems). Fortunately, 1 
km horizontal grid spacing is sufficiently fine to permit 
simulation of low-level mesocyclones (LLMs). Using a large 
and geographically diverse dataset, Trapp et al. (2005) 
determined that 40 % of mesocyclones with bases below 1 km 
AGL were tornadic, versus only 15 % of mesocyclones with 
bases 3-5 km AGL. The potential utility of ensemble systems 
to LLM forecasting and thereby to tornado warning 
operations therefore merits serious consideration. Toward that 
end, this study adopts an observing system simulation 
experiment (OSSE) framework to estimate the maximum 
accuracy with which near-term-realizable ensemble forecast 

systems can predict LLM path, timing and intensity. 
Due largely to the nonlinearities associated with 

convective instability and cloud microphysics, moist 
convection is chaotic (i.e., initial condition errors grow 
rapidly, especially as finer scales are simulated; e.g., Zhang et 
al. 2003; Hohenegger and Schar 2007).  Numerical forecasts 
of supercell thunderstorms, therefore, are sensitive to errors in 
the initial state estimate provided by the data assimilation 
procedure. Such errors inevitably arise from deficiencies in 
(1) the assimilated observations (e.g., data gaps, measurement 
errors), (2) the assimilation system (e.g., simplified forward 
operators) and, in four-dimensional variational and ensemble 
Kalman filter methods, (3) the NWP model (e.g., 
discretization and physical parameterization errors). 
Additional errors occur as the model is integrated forward 
from the initial condition. In this study, we introduce model 
error into our experiments by using a finer horizontal grid for 
the truth simulation than for the ensemble analysis-forecasting 
system.  

In deducing implications of our idealized forecasts for 
near-future warn-on-forecast ensemble systems, it is 
important to consider how the predictability of the supercells 
simulated in our experiments compares to the predictability of 
real supercells. The grid resolution in our “truth” simulations 
(described in Section 2a) is coarse relative to the inertial 
subrange of cumulus convection (Bryan et al. 2003). The 
resulting absence in the simulations of the smallest supercell 
scales of motion artificially reduces upscale error growth 
(Lorenz 1969) in forecasts. This suggests the intrinsic 
predictability (i.e., the predictability that would be achieved 
given a perfect forecast model and very small initial condition 
uncertainty) of our simulated supercells is greater than that of 
atmospheric supercells. Moreover, since errors arise in current 
convection-permitting models from a multitude of sources, 
our use of a model that, apart from its coarsened resolution, is 
identical to the model used to generate “truth” presumably 
leads to our simulated supercells having greater practical 
predictability (i.e., the predictability given constraints in the 
observational network, data assimilation techniques, and 
NWP model) than atmospheric supercells. This is true even if, 
unexpectedly, the intrinsic predictability of our simulated 
supercells is similar to that of atmospheric supercells. The 
results of this study are therefore best viewed as sampling the 
upper limit of the accuracy with which early warn-on-forecast 
systems will forecast LLMs. Establishing such a baseline is 
critical to assessing the feasibility of operationally useful, 
long-term tornado warnings. 

Studies of the 4-5 May 2007 Greensburg, Kansas, 
tornadic thunderstorm by Stensrud and Gao (2010) and 
Dawson et al. (2012) demonstrate that operationally useful 
ensemble forecasts of low-level vorticity can be achieved in at 
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least some cases despite current observational, model and data 
assimilation method limitations. The experiments of Snook et 
al. (2012) support a similar hypothesis for 0-3 h forecasts of 
mesoscale convective system mesovortices. Assessing the 
generality of these results, and identifying scenarios that pose 
a particularly significant challenge to ensemble low-level 
rotation forecasts, requires that such forecasts be performed 
and evaluated for a large number of cases spanning a range of 
radar-storm geometries and atmospheric environments.  

The OSSE framework provides a powerful complement 
to real case studies of such problems, for two primary reasons. 
First, since the “truth” is known, analysis errors and their 
sensitivity to important experimental parameters (e.g., radar 
cross-beam angle) can be precisely determined. Second, there 
is no need to collect and quality-control numerous observation 
sets meeting specific desired criteria. In this paper, we 
simulate scenarios where a supercell is observed by two 
WSR-88D radars and evaluate forecasts of LLMs for different 
radar-storm distances, radar cross-beam angles, assimilation 
period lengths, and low-level rotational intensities. The 
simulated supercell used as “truth” in the majority of our 
experiments rapidly develops an intense LLM-like vortex 
(hereafter, simply “LLM”) that undergoes cyclic 
mesocyclogenesis through the remainder of the simulation. 
Evaluations of those forecasts focus upon the timing of the 
development of the initial LLM, as well as the path and 
rotational intensity of the LLM “family”. To test the ability of 
the ensemble system to distinguish between supercells that 
develop very different magnitudes of low-level rotation, we 
also perform experiments in which the “true” storm develops 
a weaker LLM, or fails to sustain strong low-level rotation at 
all (null case).  

The rest of the paper is organized as follows. Section 2 
describes the model configuration for our supercell 
simulations, the procedure for emulating radar observations of 
the simulated storms, the ensemble data assimilation and 
forecast system, and our verification methods. The results of 
the LLM forecasts are described in Section 3. Implications of 
the forecast results for the proposed warn-on-forecast 
paradigm are discussed in Section 4.   
 
2.   METHODS 
2.1. “Truth” simulations 

The two “truth” simulations for our experiments were 
generated by the National Severe Storms Laboratory 
Collaborative Model for Multiscale Atmospheric Simulation 
(NCOMMAS; Wicker and Skamarock 2002; Coniglio et al. 
2006). The NCOMMAS is a nonhydrostatic, compressible 
cloud model designed to simulate convective storms in a 
simplified setting (e.g., flat surface, no surface fluxes nor 
radiative transfer, and horizontally uniform base state).  The 
prognostic variables in NCOMMAS are the wind components 
u, v and w, Exner function π, turbulent mixing coefficient Km, 
potential temperature θ, water vapor mixing ratio qv, and the 
microphysical parameterization (MP) scheme variables (listed 
below). The supercell simulations proceeded on a stationary 
200 × 200 × 20 km domain with horizontal grid spacing ΔH = 
1/3 km and vertical spacing increasing from 200 m over the 
lowest 1 km to 600 m above z = 5.2 km. Both simulations 
were integrated for 2 h using large and small time steps of 4 s 
and 2/3 s, respectively.  

The sounding (Fig. 1a) that provided the model base 
state for the default supercell simulation (used in most of our 
experiments) is a composite of the wind profile from the 1200 
UTC 3 April 1974 Covington, Kentucky rawinsonde, 
modified to yield a storm motion slow enough to permit use 
of a stationary model grid, and a thermodynamic profile 
similar to that of Weisman and Klemp (1982; 1984) with 
some modifications to increase the low-level stability below 
800 mb to introduce a weak capping inversion more 
indicative of supercell environments (G. Bryan 2011, personal 
communication). The sounding used in the second simulation 
has the same thermodynamic profile as that used in the default 
simulation, but the wind profile is modified to reduce the 
wind shear by 1/3 (Fig. 1b). In both simulations, the storm 
was initiated with an ellipsoidal 4-K thermal bubble with 
horizontal and vertical radii of 10 km and 1.4 km, 
respectively. A fully dual-moment version of the Ziegler et al. 
(1985) MP scheme (Mansell et al. 2010) was used. The 
scheme predicts mixing ratio and number concentration for 
distributions of cloud droplets, rain, cloud ice crystals, snow, 
graupel and hail, as well as bulk concentration of cloud 
condensation nuclei, average bulk densities of graupel and 
hail, and the melted fractional diameters of graupel and hail. 

In both supercell simulations, the initial supercell splits 
several times during the course of the model integration, 
consistent with the straight-line hodographs above z = 1 km. 
We restrict our attention to the initial supercell pair in the 
default simulation and to the initial right-moving supercell in 
the weaker-shear simulation. Cursory inspection of the 
simulated low-level reflectivity fields reveals marked 
differences in the evolution of the three supercells (Fig. 2). 
Time-height plots of the horizontal-domain-maximum-
amplitude cyclonic (anticyclonic) vorticity, ζmax, are shown 
for the right-moving supercells (left-moving supercell) in 
Figs. 3a-c (description of Figs. 3d-f is differed to Section 2d). 
Cyclic mesocyclogenesis occurs in both default-simulation 
supercells; this process is reflected in temporal oscillations in 
ζmax (Figs. 3a, b). Series of LLMs from the same storm are 
considered a single object for the purpose of the verification. 
The right-moving supercell in the default simulation, “supA”, 
develops a fairly intense LLM just after t = 60 min; the LLM 
weakens after t = 65 min, rapidly reintensifies after t  = 75 
min, and remains strong through the end of the simulation 
(Fig. 3a). The evolution of the LLM of the left-moving 
supercell in the default simulation, “supB”, bears qualitative 
similarities to that of the supA LLM (Fig. 3b). However, low-
level mesocyclogenesis is delayed relative to supA, and ζmax is 
generally lower above z = 1 km. The latter difference is at 
least partly attributable to the fact that both storms experience 
positive storm-relative environmental helicity, the tilting of 
which enhances the (cyclonic) LLM in supA but weakens the 
(anticyclonic) LLM in supB. The supercell in the weaker-
shear simulation, “supC”, fails to sustain strong low-level 
rotation (Fig. 2c). This is the intended consequence of 
reducing the environmental vertical wind shear, and likely 
results from some combination of the following effects: (1) 
lesser low-level horizontal vorticity available to be tilted into 
the vertical; (2) lesser mid-level horizontal vorticity, which 
tends to promote a weaker mid-level mesocyclone and, due to 
the resultingly reduced perturbation vertical pressure gradient 
force, weaker low-level updraft and thus vertical vorticity 
stretching; and (3) reduced storm-relative flow, which tends 
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to cause precipitation to fall too close to the updraft, which in 
turn is more likely to become undercut by strong outflow 
(supC indeed becomes outflow-dominant early in the 
simulation).  The large differences in evolution between the 
three supercells allow us to pose a more varied, meaningful 
challenge to the ensemble analysis-forecasting system. 

As with any OSSE study, the relevance of our results to 
real-data applications is largely determined by the physical 
realism of the model used to generate our “truth” simulations. 
Of particular importance is the representativeness of the low-
level vertical vorticity generation processes in the simulations. 
Given the important contributions of microphysical processes 
to the magnitudes and locations of thermodynamic and wind 
gradients in supercells, gross MP scheme errors can lead to 
unphysical simulation of baroclinic and barotropic vorticity 
processes. Fortunately, such concerns are mitigated in the 
present study for three reasons. First, our use of a double-
moment MP scheme affords greater flexibility in hydrometeor 
size distributions than single-moment schemes, presumably 
improving representation of size sorting and other processes 
(e.g., Milbrandt and Yau 2006; Dawson et al. 2010). Second, 
the surface gradients and maximum deficits of perturbation 
virtual potential temperature in our simulations (not shown) 
are consistent with the real supercell observations described in 
Shabbot and Markowski (2006) and Markowski et al. (2002). 
Third, the storm morphology and evolution (not shown) 
comport with observations in many important ways, including 
the bowing of the RFD gust front by surging outflow, and 
attendant horseshoe-shaped updraft; the existence of a vertical 
vorticity dipole straddling the hook echo; and the diffuse 
nature of the forward flank downdraft “gust front”. These 
considerations suggest that our simulations reasonably 
represent the processes most important to LLM evolution in 
real supercells. 

 
2.2. Radar emulation and experiments 

Pseudo-observations of reflectivity Zobs and Doppler 
velocity Vobs are generated from the model reflectivity Z, wind 
components u, v, and w, and hydrometeor fall speeds wt using 
a slightly modified version of the Wood et al. (2009) radar 
emulator.  This technique simulates the power-weighted 
averaging of radial velocities and reflectivities of scatterers 
within a Gaussian radar beam, and accounts for earth 
curvature and standard atmospheric beam refraction in 
computing the beam path. The same hydrometeor fall speed 
formula is used in the calculation of the Vobs, the Vobs

 forward 
operator in the EnKF, and the model: 

, where ρsim (kg m-3) is the height-
varying base state air density in the simulation and Z is given 
in mm6 mm-3 (Joss and Waldvogel 1970).  Reflectivity 
observations < 0 dBZ are set to 0 dBZ to imitate the common 
practice of treating missing or very low reflectivities as “no-
precipitation” observations to suppress spurious convection in 
the ensemble (Dowell et al. 2004; Tong and Xue 2005; Aksoy 
et al. 2009). To emulate the lack of radial velocity data in 
regions of low signal-to-noise ratio, Vobs are only computed in 
regions with Zobs > 5 dBZ. Random errors having 2 m s-1 (3 
dBZ) standard deviation are added to the Vobs (Zobs). 

In all of our experiments, the simulated supercell is 
observed by two stationary radars having characteristics 
consistent with the WSR-88D network. Volume coverage 

pattern 11 (VCP-11) is used, with successively higher groups 
of (2-3) sweeps computed from model fields valid at 
successively later (in 1-min increments) simulation times. At 
the lowest two sweeps, super-resolution data (currently 
available in the WSR-88D network for visualization only) are 
emulated; legacy-resolution observations are generated at 
steeper elevation angles (Table 1). The positions of the 
emulated radars and the approximate paths of the main low-
level updraft of each of the three supercells during the data 
assimilation period are depicted in Fig. 4. One radar is fixed 
at the same location, ~130 km east-southeast of the supA low-
level updraft at t = 40 min, in all of the experiments. The 
second radar is repositioned from experiment to experiment to 
investigate the sensitivity of the LLM forecasts to the radar-
storm geometry. Experiments are labeled according to the 
supercell being forecast, the approximate distance of the 
second radar from the low-level updraft at t = 40 min, and the 
approximate cross-beam angle of the two radars at the same 
time and location (e.g., ‘130km_CBA70_supA’). Forecasts 
are initialized at t = 50 min (after 30 min of data assimilation) 
or t = 70 min (after 50 min of data assimilation) and labeled 
accordingly (e.g., ‘130km_CBA70_supA_50min’). The t = 70 
min forecasts ideally benefit from the additional 20 min of 
radar data assimilated, but at the cost of reduced forecast lead 
time. 

 
2.3. Ensemble analysis-forecasting system 

Initial conditions for the ensemble forecasts are obtained 
from assimilating the emulated radar observations using the 
NCOMMAS ensemble square root filter (based on the filter of 
Whitaker and Hamill 2002). Eighty ensemble members are 
used; repeating the 130km_CBA70_supA_50min forecast 
(Section 3a) with a 120-member ensemble did not 
substantially improve the results. The NWP model used to 
advance the ensemble members to each successive 
assimilation time is equivalent to that used to generate the 
truth simulations, except that ΔH is increased from 1/3 km to 1 
km. The covariance localization factor is calculated using the 
Gaspari and Cohn (1999) correlation function with covariance 
estimation cutoff radii of 6 km and 3 km in the horizontal and 
vertical directions, respectively. To imitate the practice of 
accounting for uncertainty in the sounding, and to mitigate 
ensemble underdispersion at higher altitudes, perturbations 
are added to the base-state u and v of each ensemble member 
following the procedure of Potvin et al. (2012). The 
perturbations are computed by generating random sinusoidal 
perturbations of the form used in Aksoy et al. (2009), then 
scaling them such that their standard deviation at each level is 
a fraction (= .025 in this study) of the base-state wind speed 
multiplied by exp(z/22), where z is the model level height 
(km). Ellipsoidal thermal bubbles having random sizes and 
magnitudes are inserted in each member at t = 0 to initiate 
storms.  The bubbles are randomly positioned within a 40 × 
40 × 1.5 km box centered on the location of the initiation 
bubble in the truth simulation. The ensemble members are 
then integrated 20 mins forward to the beginning of the data 
assimilation period (t = 20 min). This allows physically 
realistic covariances to develop in the ensemble, thus 
maximizing the utility of radar data early in the assimilation 
period (e.g., Snyder and Zhang 2003; Dowell et al. 2004). 
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Prior to assimilation, observations are analyzed to a 
quasi-horizontal grid on each conical scan surface (e.g., 
Dowell et al. 2004; Dowell and Wicker 2009) using Cressman 
interpolation. Observations from the radars further from the 
storms (x ≥ 145 km; Fig. 4) are interpolated to 2 km grids 
using a Cressman radius of 1.5 km. Observations from the 
radars closer to the storms are interpolated to 1 km grids using 
a Cressman radius of 1.0 km. To account for storm motion 
between the times at which observations are valid and the 
times at which they are analyzed, the interpolated 
observations are shifted to locations determined by the 
estimated storm translational velocity components U and V. 
The U and V (= 13 m s-1 and 4 m s-1, respectively) are treated 
as constants in space and time and were determined by 
visually tracking features in the Zobs field. Observations are 
assimilated every two minutes using a two-minute window 
centered on t. As in many EnKF radar data assimilation 
studies, to reduce computational cost, the observation 
operator H trilinearly interpolates model fields to 
observational locations, and thus makes no provision for the 
shape of, nor inhomogeneous reflectivity distribution within, 
the radar beam (Thompson et al. 2012 showed these 
simplifications do not severely degrade EnKF analyses and 
subsequent forecasts). Following Dowell and Wicker (2009), 
to save computational time, observations are not used to 
update π and Km since the impact of the observations on these 
variables is negligible. Observational error standard 
deviations of 2 m s-1 and 5 dBZ are assumed in the filter. As 
in Potvin and Wicker (2012), we used larger filter-assumed 
Zobs errors (5 dBZ) than were actually added to the Zobs (3 
dBZ) to reduce the impact of errors in the forecast 
hydrometeor fields and Zobs operator. In experiments with 
both radars located roughly equidistantly from the storm, Zobs 
are assimilated only from radar # 1 (Fig. 4) since Zobs from the 
second radar would contain little independent information.  

A procedure similar to the additive noise method 
(Dowell and Wicker 2009; based on the ensemble 
initialization procedure of Caya et al. 2005) is used to 
maintain ensemble spread consistent with the ensemble 
forecast error variance. Smoothed perturbations having 
horizontal and vertical length scales of 4 km and 2 km, 
respectively, are added to u, v, θ, and dewpoint temperature 
Td below z = 10 km wherever Zobs > 20 dBZ during the data 
assimilation. Prior to being smoothed, the u, v, θ and Td 
perturbations have standard deviations of 2 m s-1, 2 m s-1, 1 K 
and 1 K, respectively. Time-height plots of Vobs consistency 
ratio and mean forecast innovation valid where Zobs > 10 dBZ 
(not shown) suggest sufficient ensemble spread was obtained 
in all of our experiments. 

 
2.4. Forecast verification 
 

Our evaluations of the LLM ensemble forecasts focus on 
estimates of the peak azimuthal-mean vortex-maximum 
tangential velocity averaged over the z = 0.5-1.5 km layer. 
This parameter, VT, is computed at each time within the 
evaluation period (t = 50-120 min) for both the truth 
simulations and the ensemble member forecasts using the 
following procedure: 

 
 

1) Vertically average ζ over z = 0.5-1.5 km, yielding ζ (x, y). 

2) Determine the location of the maximum ζ , (xmax, ymax). 
3) For each grid coordinate (x0, y0) within 3 km of (xmax, ymax), 
compute the circulation, 

   
Γ ≡ V i dlC∑ , for a series of circles 

C centered on (x0, y0) with radius R alternately set to 1.0 km, 
1.5 km, 2.0 km, 2.5 km and 3.0 km, where dl is the line 
element vector tangent to C at a given point, and V is the 
vertically averaged horizontal wind field valid over the same 
layer as ζ  (z = 0.5 km to ~1.5 km). 
4) For each Γ, compute vt = |Γ / 2πR|.  
5) VT  = max{vt}. 

 
The degree to which each forecast replicates the timing 

and intensity of the true low-level rotation is assessed by 
comparing time series of the ensemble probability of VT  
exceeding prescribed thresholds in the forecast supercell to 
time series of VT in the “true” supercell (Figs. 3d-f). The skill 
with which each forecast replicates the path of the maximum 
low-level rotation is evaluated by comparing 3 × 3 point 
neighborhood ensemble probabilities (Schwarz et al. 2010) of 
the forecast-period-maximum VT exceeding a threshold to the 
region where the forecast-period-maximum true VT  exceeds 
the same threshold.  The temporal and spatial ensemble 
probabilities are labeled Pt and Pxy, respectively. 

 
3.   RESULTS  

3.1. Both radars distant from storm 

Within the WSR-88D network, supercells are often > 
100 km from the nearest radars. In such cases, the planetary 
boundary layer, which is dynamically critical to supercell 
evolution, is largely unobserved. In addition, the resolution of 
radar observations is substantially reduced at such long 
ranges. To explore whether useful ensemble forecasts of 
potentially tornadic supercells can be achieved in such 
suboptimal circumstances, we performed experiments 
(130km_CBA70_supA, 130km_CBA65_supB, and 
140km_CBA65_supC) with both emulated radars positioned 
> 100 km from the low-level updraft throughout the data 
assimilation period (Fig. 4). At these distances, the lowest 
(0.5°) beam from each radar is centered > 1.5 km above the 
ground. Thus, the development of accurate ensemble 
covariances between the model state variables above and 
below the data cutoff is critical to retrieving the low-level 
storm fields during the data assimilation. Favorable CBAs of 
roughly 60° to 90° obtain during the assimilation period for 
all three supercells; the impact of poor CBAs on forecasts of 
supA is examined in Section 3c.  

The Pt and Pxy provide mixed, but overall positive, 
support to the ability of a warn-on-forecast system to predict 
low-level rotation in a supercell located within a gap in the 
low-level domain of the WSR-88D network. We first evaluate 
the supA forecast initialized at t = 50 min 
(130km_CBA70_supA_50min). Consistent with the brief 
LLM that occurs just after t = 60 min in the truth simulation 
(Fig. 3d), roughly 40 % of the ensemble members contain VT 
> 10 m s-1 shortly after initialization (Fig. 5a). The forecast 
LLMs, however, generally form 5-10 mins too early (a 
possible reason for this is given in the next subsection) and, 
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due partly to their premature development, are displaced 
southwest of the true LLM (Fig. 6a). In addition, there is only 
a weak signal in the forecast for the subsequent weakening of 
the initial LLM (Figs. 5a, 6a). The timing of the onset of 
sustained strong low-level rotation, on the other hand, is well 
forecast, with Pt(VT > 10 m s-1) rapidly increasing beginning 
near t = 75 min, roughly coincident with the true VT exceeding 
the same threshold. During the period of maximum true VT, t 
≈ 90-100 min, Pt(VT > 10 m s-1) and Pt(VT > 15 m s-1) average 
near 75 % and 30 %, respectively. The Pt for both thresholds 
decrease after t ≈ 105 min, consistent with, though slightly 
delayed from, the decline in true VT after t ≈ 100 min. The 
Pt(VT > 10 m s-1) remains high, generally > 60 %, through the 
end of the forecast period, consistent with the maintenance of 
VT > 10 m s-1 in the true supercell.  

The peak Pxy(VT > 10 m s-1) are generally displaced 
several kilometers south of the true LLM track, but these 
errors are quite acceptable given the long forecast lead times. 
The swath of peak Pxy is generally centered within the 
envelope of LLM tracks, which is ≤ 30 km wide (along the 
direction perpendicular to the storm motion) through the 
forecast period. Given that current tornado warning boxes are 
generally ~20-30 km wide at 30 min lead times, a tornado 
warning polygon constructed to encompass the envelope of 
Pxy > 0 (a conservative approach) in this case would 
comfortably include the true LLM (and potential tornado) 
track without being unduly large. Computations of Pxy(VT > 
10 m s-1) for 10-min subintervals of the forecast period (Fig. 
7a) show that the forecast LLM trajectory is reasonably 
accurate in time as well as in space. This suggests that warn-
on-forecast ensembles will ultimately permit greater temporal 
resolution in tornado warnings. 

As implied by the large width of the Pxy > 0 envelope 
relative to the true path of VT > 10 m s-1, large variance exists 
among the individual low-level rotation forecasts (Fig. 8a). 
The differences between the forecasts are striking given the 
qualitative similarities between the member initial conditions 
(shown at low levels in Fig. 8b), and serve to underscore the 
chaotic nature of the phenomena being predicted. The large 
errors that occur in many of the individual member forecasts 
highlight the advantage of using an ensemble, rather than 
deterministic, forecast approach. 

The 130km_CBA70_supA_70min forecast is superior to 
the 130km_CBA70_supA_50min forecast, an expected result 
of the larger number of radar volumes assimilated and the 
shorter forecast lead times. The timing of the onset of VT > 15 
m s-1 is better captured, as is the decrease in VT after t = 100 
min (Fig. 5a). After t = 75 min (when the true VT exceeds 10 
m s-1), the Pt(VT > 10 m s-1) is also better (Fig. 5a). The Pxy 
swatch is considerably narrower at later times than for 
130km_CBA70_supA_50min, and the maximum Pxy are 
substantially larger (cf. Figs. 6a,b). These results support the 
expectation that warn-on-forecast ensemble output will be 
valuable not just to issuing tornado warnings, but also to 
refining existing warnings as newer forecasts become 
available. 

 We now turn to evaluating the 
130km_CBA65_supB forecasts (recall that supB is the left-
moving  counterpart to supA; Section 2a). Consistent with the 
lower VT in supB (cf. Figs. 3a, b), the Pt are much smaller 
than for the supA forecasts (cf. Figs. 5a, b; cf. Figs. 5c, d). 
The rapid increase in the true VT to above 5 m s-1 is 

reasonably well captured by the Pt(VT > 5 m s-1) in both 
130km_CBA65_supB_50min and (especially) 
130km_CBA65_supB_70min. The decrease in VT after t = 
100 min, however, is not reflected in either forecast.  

Plots of Pxy(VT > 5 m s-1) indicate that, as in the supA 
forecasts, the supB forecast LLM tracks are displaced only 
several kilometers from the true LLM track (Figs. 9a,b). 
Moreover, the envelope of Pxy > 0 again encompasses the true 
LLM path. While the Pxy > 0 envelope is substantially wider 
than in the  130km_CBA70_supA forecasts, using a slightly 
less conservative criterion, such as Pxy > 0.1, defines a much 
narrower tornado risk area that still includes the true LLM 
path. Thus, both the supA and supB forecasts effectively 
outline the region of greatest tornado risk. Moreover, as with 
130km_CBA70_supA_50min, 130km_CBA65_supB_50min 
accurately predicts the timing in addition to the path of the 
LLM (Fig. 7b), further suggesting that warn-on-forecast 
ensemble output may permit enhanced temporal information 
in warnings. Also consistent with the 130km_CBA70_supA 
forecasts, 130km_CBA65_supB_70min is substantially better 
than 130km_CBA65_supB_50min (Fig. 5b; cf. Figs. 9a,b).  

In the supC simulation, intense low-level rotation is 
absent for most of the forecast period, with VT generally 
remaining well below 10 m s-1 (except near t = 70 min; Figs. 
3c,f). This is therefore a suitable null case test for our 
ensemble system. Unfortunately, the peak Pt(VT > 10 m s-1) is 
substantially higher in 140km_CBA65_supC_50min than in 
130km_CBA65_supB_50min (cf. Figs. 5a,c) despite supB 
exhibiting stronger low-level rotation and supC never actually 
exceeding the VT = 10 m s-1 threshold (Fig. 3f). In addition, 
while the true VT generally remains below 5 m s-1 after t = 80 
min, the 140km_CBA65_supC_50min Pt(VT > 5 m s-1) ranges 
between 60 % and 80 % during the same period. Thus, based 
solely on the Pt, supC would be regarded as a greater tornado 
threat than supB, despite supC never developing a distinct 
LLM. The overprediction of the low-level rotation in supC is 
also starkly reflected in the Pxy(VT > 5 m s-1) and Pxy(VT > 10 
m s-1) plots (Figs. 10a, e). These results raise concerns about 
the reliability of warn-on-forecast low-level rotation guidance 
in null cases, particularly with respect to false alarms. These 
concerns are enhanced by the fact that the results of our 
idealized forecasts are likely more accurate than would 
typically be obtained in practice for similar cases (Section 1).  
Fortunately, the overestimation of VT is subtantially mitigated 
in the t = 70 min forecast, particularly with respect to VT > 10 
m s-1 (Fig. 5c; cf. Figs. 10a,b; cf. Figs. 10e,f). 

 
3.2. One radar close to storm, one distant from storm 

The analyses and subsequent forecasts in the above 
experiments are hindered by the absence of radar data over 
the lowest 1.5 km of the storms and the relatively coarse 
resolution of the assimilated observations, both of which 
result from the large distances between the supercells and 
both radars. While that scenario is common, the WSR-88D 
network is sufficiently dense that storms are often located 
relatively close to one radar. A set of experiments was 
therefore performed (40km_CBA70_supA, 
35km_CBA60_supB, and 50km_CBA65_supC) in which 
radar #2 was relocated closer to the supercells (Fig. 4).  

In the supA forecasts, much of the southward bias in the 
LLM track disappears, and the peak Pxy increases relative to 
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the original forecasts (cf. Figs. 6a, c and Figs. 6b, d). In 
addition, the Pt(VT > 10 m s-1) and Pt(VT > 15 m s-1) are larger 
than in the original forecasts during the peak in the true VT, 
and the subsequent decline in VT is better captured (Figs. 3d, 
11a,d). Comparisons of surface θ’, surface divergence and 1 
km AGL reflectivity fields from the EnKF mean analyses and 
individual ensemble members (not shown) from 
130km_CBA70_supA and 40km_CBA70_supA reveal that 
all the fields are generally slightly better retrieved in the latter 
analysis (Fig. 12a). Perhaps the most important difference 
between the 130km_CBA70_supA and 40km_CBA70_supA 
analyses is that the analyzed surface RFD gust front 
(RFDGF), and thus the leading edge of the storm cold pool, is 
generally too far east and too meridionally oriented in many 
of the 130km_CBA70_supA member analyses. This bias was 
also found 1 km and 2 km AGL, but not at higher altitudes 
where observations were available (not shown). We speculate 
that the premature development of low-level rotation in many 
of the 130km_CBA70_supA_50min member forecasts 
(Section 3a) resulted from the analyzed RFDGF and 
associated regions of baroclinic (horizontal) vorticity 
generation and barotropic (vertical) vorticity generation and 
stretching having advanced too close to the low-level updraft 
(within which horizontal vorticity is tilted into the vertical and 
vertical vorticity is stretched) by the initialization time. 

Moving radar #2 closer to the storms has a more varied 
impact on the supB forecasts than on the supA forecasts (Figs. 
11b, e; cf. Figs. 9a,c; cf. Figs. 9b,d). On one hand, the Pt and 
Pxy (fortunately) increase when and where the true VT is 
highest. On the other hand, the rapid increase of Pt is delayed 
by ~5-10 min relative to the original forecast and to the truth 
simulation, and in 35km_CBA60_supB_50min, the maximum 
Pxy is generally displaced eastward of the maximum true VT 
(the maximum Pxy in 130km_CBA65_supB_50min was 
roughly collocated with the maximum true VT). As a result, 
the Pxy(VT > 5 m s-1) envelope in 35km_CBA60_supB_50min 
excludes part of the region of true VT > 5 m s-1. These results 
are somewhat surprising given that the 
35km_CBA60_supB_50min initialization appears mildly 
better than the 130km_CBA65_supB_50min initialization 
(Fig. 12b). Fortunately, both Pt and (especially) Pxy are 
improved in 35km_CBA60_supB_70min relative to 
35km_CBA60_supB_50min (cf. Figs. 11c,f; cf. Figs. 10e,f; 
cf. Figs. 10g,h). Overall, however, neither the t = 50 min nor t 
= 70 min forecasts benefit substantially from the greater 
proximity of radar #2. 

In the case of supC, the decreased distance to radar #2 
substantially degrades the t = 50 min forecast (Fig. 11c; cf. 
Figs. 10a,c; cf. Figs. 10b,d; cf. Figs. 10e,g; cf. Figs. 10f,h). 
While the Pt(VT > 5 m s-1) and Pxy(VT > 5 m s-1) are now much 
larger within the spatiotemporal window of true VT > 5 m s-1, 
they are also much larger at subsequent times/locations along 
the storm path. Moreover, the Pt(VT > 10 m s-1) and Pxy(VT > 
10 m s-1) are substantially increased, despite the fact that the 
true VT < 10 m s-1 at all times.  

Visual comparison of the EnKF means and individual 
member fields at t = 50 min (not shown) reveals the RFDGF 
is analyzed slightly too far east in 140km_CBA65_supC, and 
slightly too far west in 50km_CBA65_supC. Perhaps as a 
consequence of this, many of the 50km_CBA65_supC_50min 
member forecasts, but not the 140km_CBA65_supC_50min 
forecasts, erroneously delay the undercutting of the updraft by 

the cold pool (not shown). As a result, the period of vertical 
vorticity generation is erroneously prolonged in the 
50km_CBA65_supC_50min forecast, which presumably 
explains the overprediction of VT.   

Fortunately, the t = 70 min supC forecast is not degraded 
overall by the greater proximity of radar #2 (cf. Fig. 11f; cf. 
Figs. 10b,d; cf. Figs. 10f,h). As a result, 
50km_CBA65_supC_70min improves substantially upon 
50km_CBA65_supC_50min. As was the case with supB, 
however, forecasts of supC do not appear to generally benefit 
from decreasing the distance to radar #2, despite the 
additional information content of the assimilated 
observations. 

 
3.3. Impact of poor radar cross-beam angles 

The 130km_CBA70_supA and 40km_CBA70_supA 
experiments (Section 3a) were repeated with the second radar 
relocated so as to maintain roughly the same distance from the 
storm while effecting much poorer CBAs (Fig. 4). In 
130km_CBA25_supA, the CBA over the low-level updraft 
varies between ~20° and ~30° during the t = 20-70 min 
period. In 40km_CBA0_supA, the CBAs are particularly 
poor, varying from 30° to as low as 0° (in which case the 
wind component perpendicular to the radar baseline is totally 
unsampled). The Pt and Pxy for the ensemble forecasts 
initialized at t = 50 min and t = 70 min are presented in Figs. 
13 and 14, respectively.  

 The impact of the poorer CBAs, rather than being 
consistently undesirable as might be expected, is mixed. Only 
minor differences occur between 
130km_CBA25_supA_50min and 
130km_CBA70_supA_50min (Fig. 13a; cf. Figs. 14a, 6a). 
From t = 80 to  t = 95, the 130km_CBA25_supA_70min Pt 
are higher than in 130km_CBA70_supA_70min (Fig. 14b), a 
desirable result given the true VT > 15 m s-1 during that period 
(Fig. 3d). On the other hand, the subsequent rapid decrease in 
the 130km_CBA25_supA_70min Pt(VT > 15 m s-1) occurs too 
early, while that of 130km_CBA70_supA_70min comports 
well with the true VT falling below 15 m s-1 around t = 100 
min.  

Turning to the forecasts with radar #2 positioned closer 
to the storm, the maintenance of true VT > 10 m s-1 after t = 
100 min is much better signalled in 
40km_CBA0_supA_50min than in 
40km_CBA70_supA_50min (Fig. 13c; cf. Figs. 14c, 6c), as is 
the timing of the onset of VT > 15 m s-1 (Fig. 13c). The decline 
of VT below 15 m s-1, however, is better reflected in 
40km_CBA70_supA_50min (Fig. 13c). The 
40km_CBA0_supA_70min forecast is the only one that is 
substantially degraded by the poor CBAs. The Pt(VT > 10 m s-

1) and Pxy(VT > 10 m s-1) are substantially lower in 
40km_CBA0_supA_70min than in 
40km_CBA70_supA_70min after t = 80 min (Fig. 13d; cf. 
Figs. 14d, 6d), during which the true VT > 10 m s-1. The Pt(VT 
> 15 m s-1) is also greatly reduced during this period, which is 
a desirable result after t = 105 min (when VT falls below 15 m 
s-1; Fig. 3d), but is inconsistent with the true VT > 15 m s-1 

during 80 min < t < 105 min. 
Despite the varied impacts of reducing the CBAs, two 

tentative conclusions can be drawn from the results. As 
exemplified in 40km_CBA0_supA_70min, very poor radar 
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CBAs can substantially limit the accuracy of the LLM 
forecasts. On the other hand, the results of the remaining three 
forecasts suggest slightly less narrow CBAs (20°-30°) do not 
necessarily introduce large errors. The latter conclusion is 
encouraging given that such CBAs are common within the 
WSR-88D network.  
 

4.   SUMMARY AND CONCLUSIONS  

The OSSEs presented above provide tentative support to 
one of the primary hypotheses of the warn-on-forecast vision 
(Stensrud et al. 2009): that storm-scale ensemble forecast 
systems achievable in the near future will enable mean 
tornado warning lead times of 30 minutes or more. The most 
encouraging results were obtained in experiments where both 
emulated WSR-88D radars were positioned > 100 km (during 
the data assimilation period) from a pair of supercells (supA 
and supB) that later developed distinct LLMs. Despite the 
relatively coarse radar resolution and the absence of 
observations over the lowest 1.5 km of the atmosphere, the 
EnKF data assimilation system retrieved the boundary layer 
well enough for ensuing ensemble forecasts to effectively 
predict the development and evolution of the LLMs. SupA 
was correctly forecast to develop stronger low-level rotation 
than supB, and the timing of the onset of significant low-level 
rotation was predicted fairly well in both cases. In addition, 
the trajectories of both storms’ LLMs were captured 
reasonably well. These results suggest that even in the 
common scenario where a supercell exists within a low-level 
gap in the WSR-88D domain, operationally useful 
probabilistic guidance can be obtained on the timing, path and 
magnitude of tornado risk. Moreover, additional experiments 
with supA indicated that while extremely narrow radar cross-
beam angles may substantially degrade LLM forecasts 
(though not enough to render them useless), cross-beam 
angles as low as 20-30º may not be unduly detrimental. The 
latter result is broadly consistent with the OSSEs of Potvin 
and Wicker (2012), in which decreasing radar cross-beam 
angles from ~90º to ~30º had a relatively minor impact on 
EnKF analyses of a supercell wind field, but assimilating 
single-radar data introduced severe errors into dynamical 
analyses. The results of the present study suggest the 
frequently suboptimal radar-storm geometry within the WSR-
88D network does not preclude useful numerical prediction of 
LLMs.  

Forecasts of a supercell that failed to develop a distinct 
LLM (supC) were less successful than forecasts of supA and 
supB. The magnitude of low-level rotation was overpredicted 
during much of the forecast period; in fact, more ensemble 
members predicted the development of strong low-level 
rotation in supC than in supB. This result implies that 
mitigating the tornado warning false alarm rate may continue 
to be a significant challenge under the warn-on-forecast 
paradigm. 

In experiments in which one of the radars was relocated 
to within 30-50 km of the storms, supA forecasts generally 
benefited from the higher-resolution observations and data 
availability nearer the ground. This result is consistent with 
previous studies (e.g., Dong et al. 2011; Schenkman et al. 
2011; Snook et al. 2012) and motivates the installation of gap-
filling (e.g., Collaborative Adaptive Sensing of the 
Atmosphere; McLaughlin et al. 2009) radars within the 

current WSR-88D network. The supB forecasts, however, 
generally did not improve when the radar was moved closer to 
the storm. Worse, the supC forecast initialized at t = 50 min 
was substantially degraded, with low-level rotation being 
even more overpredicted than in the forecast with both radars 
> 100 km away.  

Fortunately, forecasts of all three supercells were 
substantially improved in all but once case 
(40km_CBA0_supA) when initialized at t = 70 min rather 
than t = 50 min, presumably due to both the better initial 
conditions (owing to the additional 20 mins of data 
assimilation) and the shorter forecast lead times. In instances 
where forecasts initialized at t = 50 min were degraded from 
moving one of the radars closer to the storm, initializing the 
forecasts at t = 70 min significantly mitigated those errors. To 
the extent that the improvements in the  t = 70 min forecasts 
resulted from improved initial conditions, it is possible that 
methods for reducing the ensemble spinup time (e.g., 
“Running-In-Place”, or RIP; Kalnay and Yang 2010) could 
substantially improve the t = 50 min forecasts.  This would 
soften the tradeoff between increased forecast accuracy (later 
initialization) and increased forecast lead time (earlier 
initialization). 

As explained in the introduction, the forecast results 
presented in these idealized experiments provide an estimate 
of the best-case scenario achievable in practice. It is plausible 
that if the above experiments with supA and supB were 
repeated for real storms in similar scenarios (i.e., comparable 
radar-storm geometries and storm environments), larger 
model errors could increase the spread and/or bias in the LLM 
path forecasts enough that a reasonably-sized tornado warning 
polygon based on that guidance would fail to encompass the 
true LLM path. Perhaps more concerning is the possibility 
that supercells that do not develop strong low-level rotation 
(as with supC) may pose an even greater false alarm risk than 
our idealized experiments suggest. To explore these 
possibilities, the OSSE framework presented herein could be 
extended to examine the impact of various model errors 
(including in the initial storm environment) on LLM 
forecasts. The results of those experiments would further 
clarify expectations for the performance of near-future warn-
on-forecast systems, and potentially identify additional 
scenarios where numerical forecasts of low-level rotation may 
fare poorly. It would also be valuable to explore how much 
the forecast accuracy suffers under more unpredictable 
scenarios, such as when the supercell is strongly interacting 
with nearby storms or traversing a highly heterogeneous, 
poorly-sampled environment. Finally, forecast improvements 
from recent EnKF innovations, including asynchronous filters 
(Sakov et al. 2010; Wang et al. 2012) and the RIP method 
mentioned above, should be examined. The authors plan to 
pursue at least some of these lines of future work. 
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Elevation angles (°) Effective half-
power beamwidth 

Vobs sampling 
intervals 

Zobs sampling 
intervals 

0.5, 1.5 1.03° 0.25 km × 0.5° 0.25 km × 0.5° 

2.4, 3.4, 4.3, 5.3, 6.2, 
7.5, 8.7, 10, 12, 14, 

16.7, 19.5 
1.39° 0.25 km × 1° 1 km × 1° 

Table 1. Radar sampling characteristics for lowest two sweeps (super-resolution) and higher 
sweeps (legacy resolution). 
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Fig 1. Model base state (a) thermodynamic profile used in both simulations, and (b) hodographs 

used in default (solid) and lower-shear (dashed) simulations. Heights (km) are indicated for three 

points on each hodograph. 
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Fig. 2. Horizontal cross-sections of z = 1 km reflectivity (shading; dBZ) and w (contoured at 5, 

10 m s-1) at t = 30, 60, 90 and 120 min: (a) default simulation; (b) lower-shear simulation.
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Fig. 3.  Left panels: time-height plots of maximum-amplitude (a) cyclonic vertical vorticity in 

supA, (b) anticyclonic vertical vorticity in supB, and (c) cyclonic vertical vorticity in supC. 

Right panels: time series of VT for (d) supA, (e) supB and (f) supC. 
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Fig. 4. Model domain used in truth simulation and EnKF experiments. The locations of the 

emulated radars are indicated by large dots. The x-y coordinates of each radar site relative to the 

southwest corner of the domain are listed in parentheses. The experiments in which each radar 

site is used are listed below the radar coordinates. Also shown are the paths of the low-level 

updrafts of supA (squares), supB (triangles) and supC (dots) during the data assimilation period 

(t = 20-70 min). 
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Fig. 5. Pt of VT  > 5 m s-1 (black), 10 m s-1 (red) and 15 m s-1 (blue) for forecasts initialized at t = 

50 min (solid) and t = 70 min (dashed): (a) 130km_CBA70_supA, (b) 130km_CBA65_supB, (c) 

140km_CBA65_supC, (d) 40km_CBA70_supA, (e) 35km_CBA60_supB, and (f) 

50km_CBA65_supC. Note that Pt(VT  > 15 m s-1) = 0 at all times in (b) and (e).  
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Fig. 6. Pxy(VT  > 10 m s-1; shading) for forecasts initialized at t = 50 min (left panels) and t = 70 

min (right panels): (a, b) 130km_CBA70_supA and (c, d) 40km_CBA70_supA. The red 

contours enclose the regions where the true VT > 10 m s-1 during the forecast period. 
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Fig. 7. Pxy valid over ten minute subintervals (shading) of (a) VT > 10 m s-1 in 

130km_CBA70_supA_50min and (b) VT > 5 m s-1 in 130km_CBA65_supB. The black contours 

enclose regions of (a) true VT > 10 m s-1 and (b) true VT > 5 m s-1 during each subinterval. 
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Fig. 8. (a) Forecast-period-maximum VT (shading) for a representative subset of the 
130km_CBA70_supA_50min member forecasts. The black contours enclose the regions of true 
VT > 10 m s-1 during the forecast period. (b) Initial conditions of the member forecasts in (a): 
surface θ’ (shading), surface convergence (green contours: -.015, -.010, -.005, .005, .01, and .015 
s-1), and 1 km AGL reflectivity (black contours: 20, 40 and 60 dBZ). 
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Fig. 9. Pxy(VT > 5 m s-1; shading) for forecasts initialized at t = 50 min (left panels) and t = 70 

min (right panels): (a, b) 130km_CBA65_supB and (c, d) 35km_CBA60_supB. The red contours 

enclose the regions where the true VT > 5 m s-1 during the forecast period.
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Fig. 10. Pxy (VT  > 5 m s-1; shading) for forecasts initialized at t = 50 min (left panels) and t = 70 

min (right panels): (a, b) 140km_CBA65_supC and (c, d) 50km_CBA65_supC. The red contours 

enclose the regions where the true VT > 5 m s-1 during the forecast period. (e-h): Same as (a-d) 

but for VT  > 10 m s-1 (note that the true VT never exceeds 10 m s-1). 
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Fig. 11. Pt of VT  > 5 m s-1 (black), 10 m s-1 (red) and 15 m s-1 (blue) for forecasts initialized at t = 

50 min (left panels) and t = 70 min (right panels): (a, d) 130km_CBA70_supA (solid) and 

40km_CBA70_supA (dashed), (b, e) 130km_CBA65_supB (solid) and 35km_CBA60_supB 

(dashed), (c, f) 140km_CBA65_supC (solid) and 50km_CBA65_supC (dashed). 
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Fig. 12. Surface θ’ (shading), surface convergence (green contours: -.015, -.010, -.005, .005, .01, 

and .015 s-1), and 1 km AGL reflectivity (black contours: 20, 40 and 60 dBZ) for (a) supA and 

(b) supB analyses. (Top panels): truth; (middle panels): 130km_CBA70_supA_50min & 

130km_CBA65_supB_50min analyses; (bottom panels): 40km_CBA70_supA_50min & 

35km_CBA60_supB_50min analyses. 
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Fig. 13. Pt of (black) VT > 5 m s-1, (red) VT > 10 m s-1 and (blue) VT > 15 m s-1 for forecasts 

initialized at t = 50 min (left panels) and t = 70 min (right panels): (a, b) 130km_CBA70_supA 

(solid) and 130km_CBA25_supA (dashed); (c, d) 40km_CBA70_supA (solid) and 

40km_CBA0_supA (dashed). 
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Fig. 14. Pxy(VT  > 10 m s-1; shading) for forecasts initialized at t = 50 min (left panels) and t = 70 

min (right panels): (a, b) 130km_CBA25_supA and (c, d) 40km_CBA0_supA. 
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