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1. Introduction

The tilting of storm-relative environmental streamwise vortic-
ity by an updraft explains updraft rotation and mesocyclone for-
mation aloft (e.g., Lilly 1982; Davies-Jones 1984). However,
in an environment devoid of vertical vorticity at the surface, ro-
tation next to the ground does not seem to develop without a
downdraft present nearby (Davies-Jones 1982a, b, 2008). In
this paper we address whether, without a downdraft playing a
role, environmental vortex lines can be tilted abruptly upward
by a gust front, leading to strong vertical vorticity very close
to the ground that can be stretched into a tornadic vortex. This
process is called hereafter the gust-front mechanism. In this re-
gard, Simpson (1982) proposed that a waterspout may form as a
result of a steep density current gust front scooping up a bundle
of horizontal vortex tubes from the sea surface and connecting
these tubes to a mesocyclone that has extended downwards to
the base of an overlying convective cloud (Fig. 1). We should
mention, however, that this hypothesis did not appear in the
later stage of this paper (Simpson et al. 1986). Davies-Jones
(1982a,b) pointed out that vorticity tilted by an updraft alone
acquires a vertical component only as it rises away from the sur-
face. At the same time as it is being produced, vertical vorticity
is being advected away from the ground. Thus, it seems that
in the absence of a downdraft vertical vorticity can be present
very near to the ground only if vortex lines near the surface are
turned abruptly upward by intense gradients of upward veloc-
ity. Adlerman et al. (1999, p. 2045) claimed that this is highly
improbable without either a strong vortex being present already
at low levels to provide strong upward pressure-gradient forces
or a gust front. Davies-Jones et al. (2001) attempted to rule out
the gust-front mechanism by pointing out that mesocyclones
form in numerical simulations that do not have the fine grid
spacing necessary to resolve the abrupt upward turning of vor-
tex lines. This argument is inductive. Below, we use theory,
supported by a numerical simulation, to provide physical rea-
sons why, even in extreme environmental shear, the gust-front
mechanism fails to produce significant vertical vorticity in the
lowest few hundred meters of the atmosphere.
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FIG. 1. Hypothesized upward tilting of vortex tubes in lowest boundary
layer by gust front associated with cumulonimbus. Low-level vortic-
ity associated with rapid upward increase of southerly wind just above
ocean surface. Resulting cyclonic whirling postulated to connect with
mesocyclone at cloud base producing visible funnel by rapid conden-
sation. [Figure and caption from Simpson (1982).]

2. Vorticity in two-dimensional, three-directional
flow

We start by considering vorticity in a simple flow that reveals
how horizontal vortex lines are tilted upward at an “obstacle”
such as a gust front. This flow is two-dimensional (∂/∂y = 0),
inviscid, isentropic flow. The flow is three-directional to pro-
vide a component of horizontal vorticity that can be tilted. The
y momentum in this slab-symmetric flow is equivalent to the
angular momentum in an axisymmetric flow. Coriolis forces
are omitted to eliminate ambient vertical vorticity. The mo-
mentum, mass continuity and entropy equations are

dv

dt
= −cpθ∇π −∇(gz) (1)

dα

dt
= α∇ · v (2)

dθ

dt
= 0, (3)

where the position vector is x = xi + yj + zk, the velocity
vector is v = ui + vj + wk, i, j, and k are the unit east-
ward, northward and upward vectors, t is time, α is specific
volume, p is pressure, π = (p/p0)κ is the nondimensional
pressure, T is temperature, θ = T/π is potential temperature,
∇ ≡ (∂/∂x, 0, ∂/∂z), and d/dt ≡ ∂/∂t+u∂/∂x+w∂/∂z.



The constants are g, the acceleration due to gravity, R, the gas
constant for dry air, cp (= 7R/2), the specific heat of dry air
at constant pressure, κ = R/cp (= 2/7), and p0, a standard
pressure (1000 mb). The equation set is closed by the ideal gas
law

α =
RT

p
=

Rθπ

p0πcp/R
. (4)

For slab-symmetric flow, the vorticity is defined by

ω = ξi + ηj + ζk =
(
−∂v
∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x

)
. (5)

From (1) and (2), the vorticity equation is

1

α

d(αω)

dt
= (ω ·∇)v + cp∇π ×∇θ

=
∂(u, v)

∂(z, x)
i +

∂(π, cpθ)

∂(z, x)
j +

∂(w, v)

∂(z, x)
k, (6)

where the Jacobian ∂(u,v)
∂(z,x)

= ∂u
∂z

∂v
∂x
− ∂u

∂x
∂v
∂z

, etc.
We obtain the integral of (6) by introducing Lagrangian co-

ordinates (X,Y, Z, τ) where τ = t, τ0 is the initial time, and
(X,Y, Z, τ0) are the initial coordinates of the parcel currently
at (x, y, z, t). The specific volume and velocity of this parcel
at τ0 are α0 and (u0, v0, w0), respectively. The parcel’s initial
vorticity is

ω0 ≡ (ξ0, η0, ζ0) =
(
−∂v0
∂Z

,
∂u0

∂Z
− ∂w0

∂X
,
∂v0
∂X

)
. (7)

Note from j· (1) and (3) that v and θ are conserved following a
parcel, i.e.,

v(x, y, z, t) = v0(X,Y, Z, τ0) (8)

θ(x, y, z, t) = θ0(X,Y, Z, τ0).

Since v does not appear in any other equation in the set, it is
a passive scalar. In other words, the flow in the x-z plane is
unaffected by v. The Lagrangian continuity equation for the
symmetric flow is

∂(z, x)

∂(Z,X)
=

α

α0
or

∂(Z,X)

∂(z, x)
=
α0

α
. (9)

From (6), (8), and (9), the vorticity equation in Lagrangian co-
ordinates is

1

α0

∂(αω)

∂τ
− ∂(u, v0)

∂(Z,X)
i − ∂(w, v0)

∂(Z,X)
k (10)

=
∂(π, cpθ0)

∂(Z,X)
j

=
∂[π − f(θ0), cpθ0]

∂(Z,X)
j

The function f(θ0) is superfluous for unsteady flows, but nec-
essary for steady flows (section 3). After defining Π =∫ τ
τ0

[π(τ̂) − f(θ0)]dτ̂ , which is the integral of π following a
parcel, and using the identities ∂x/∂τ = u, ∂z/∂τ = w,
∂v0/∂τ = 0, and ∂θ0/∂τ = 0, we can rewrite (11) as

∂

∂τ

[
αω

α0
− ∂(x, v0)

∂(Z,X)
i− ∂(Π, cpθ0)

∂(Z,X)
j− ∂(z, v0)

∂(Z,X)
k

]
= 0.

(11)
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FIG. 2. Schematic of two streamlines ψA and ψB in the y = 0 plane
in an in-up-and-out two-dimensional steady flow with v, the wind in
the third direction, increasing monotonically with height. Points A and
E lie on ψA, and points B and F lie on ψB , as shown. Points C, D,
G, H are displaced from A, B, E, F, respectively, by a distance ∆y
in the direction of symmetry. The y-velocity is conserved, and is vA
and vB on ψA and ψB , respectively. The vertical rectangle ABCD
lies in the inflow where the streamlines and vorticity are horizontal,
and the horizontal rectangle EFGH lies in the updraft. The circulation
around ABCD is ∆v ∆y where ∆v ≡ vB − vA. This is also the
circulation about the horizontal circuit EFGH. However, this much cir-
culation around a horizontal circuit can only be realized in a rising flow
at heights greater than the height of B because of v conservation.

Integration, application of the initial condition (7), and reuse of
(9) yields the vorticity formula

ω =

[
−∂v0
∂z

,
α0

α
η0 +

∂(Π, cpθ0)

∂(z, x)
,
∂v0
∂x

]
. (12)

Note from (12) that v0 serves as a “streamfunction” for the
(ξ, 0, ζ) vector field. Thus, the vortex lines lie in surfaces of
constant v0.

In simulations of convective storms, the initial state often
is an unperturbed horizontally homogeneous environment. In
such cases, v0 = v0(Z) and there is no initial vertical vorticity.
From (12) it is evident that

ω ·∇Z =
∂[Z, v0(Z)]

∂(z, x)
= 0, (13)

so the vortex lines lie in constant-Z surfaces (which coincide
here with constant-v0 surfaces, and the isentropic surfaces as
well if the environment is stably stratified). It follows from
(13) that

ζ =
(
∂z

∂x

)
Z
ξ. (14)

This suggests that significant vertical vorticity could be pro-
duced near the ground by abrupt uplifting of a constant-Z sur-
face. However, a circulation argument indicates that without
a downdraft, this mechanism fails to produce a significant ro-
tation about a vertical axis within a few hundred meters of



the ground. To see this, consider a vertical rectangular cir-
cuit ABCD in the inflow and a horizontal rectangular circuit
EFGH in the updraft formed by points on the same streamlines
as shown in Fig. 2. Because of symmetry and conservation of
v, the circulation around both circuits is the same. However,
because the flow is rising, the horizontal circuit can only be
at a greater height than the top of the vertical one. For exam-
ple, let the environmental shear in the y-direction be a constant
2×10−2 s−1, corresponding to a maximum vertical difference
in y-velocities of 10 m s−1 in the lowest 500 m of the inflow.
Then in a purely rising flow, the difference in v in the updraft
cannot exceed 10 m s−1 at the 500-m level, with proportionally
lower limits at lower levels. In contrast, a downdraft, by trans-
porting y-momentum downward, can create large circulations
around horizontal circuits that are very close to the ground.

3. Vorticity in steady two-dimensional, three-
directional flow

We can make further insights when the flow is assumed to be
steady. Let q be any positive-definite conserved variable. Since
∇ · (v/qα) = 0, we can introduce a streamfunction ψ defined
by

u ≡ −qα∂ψ
∂z

, w ≡ qα∂ψ
∂x

. (15)

When q = 1 (a valid choice), q disappears from the definition of
ψ. At the ground (z = 0) w = 0 so ψ is a constant there. Since
ψ contains an arbitrary constant, we may set ψ = 0 at z = 0.
For steady flow, the subscript 0 refers, not to initial values, but
to the uniform conditions that exist along a streamline far up-
stream from a storm where the inflow is purely horizontal, and
Z equates with z0, the height of the streamline at upstream in-
finity. Furthermore, trajectories and streamlines coincide, and
the advections of conserved variables vanish, which implies

v = v0(ψ), θ = θ0(ψ), q = q0(ψ). (16)

Derivatives with respect to ψ and z0 are linked by

− d

q0α0dψ
=

d

u0dz0
. (17)

Velocity and vorticity components are related by

(ξ, η, ζ) =
1

q0α

dv0
dψ

(u, 0, w) + [0,−∇ · (q0α∇ψ), 0], (18)

or

(ξ, η, ζ) =
dv0
dψ

(
−∂ψ
∂z

, 0,
∂ψ

∂x

)
+ [0,−∇ · (q0α∇ψ), 0].

(19)
Note that the projections of the vortex lines and streamlines
onto the x-z plane coincide. Furthermore, when the conserved
quantity q−1

0 dv0/dψ is positive, the maximum values of αζ
and w on a streamline are collocated.

The momentum equation in the x-z plane is

∇B = v × ω + cpπ∇θ0, (20)

where B is the Bernoulli function

B ≡ cpθπ + gz +
u2 + v2

0 + w2

2
. (21)

The dot product of (20) with v shows thatB is constant along a
streamline in isentropic flow. Evaluation of the Bernoulli func-
tion far upstream gives

B(ψ) = cpθ0π + gz +
u2 + v2

0 + w2

2

= cpθ0π0 + gz0 +
u2

0 + v2
0

2
. (22)

The pressure variation along a streamline is therefore given by

π − π0 =
g(z0 − z) + (u2

0 − u2 − w2)/2

cpθ0
. (23)

From (18), the Lamb vector is

L = ω × v =

(
q0αη −

1

2

dv2
0

dψ

)
∇ψ. (24)

Since B and θ are functions of ψ alone, (20) reduces to

q0αη −
1

2

dv2
0

dψ
= −dB

dψ
+ cpπ

dθ0
dψ

. (25)

When q0 = 1 and v0 = 0, this equation is the dry version
of one derived by Lilly [1979; see his (3.6)] while reviewing
theoretical work on squall lines by Moncrieff and Green (1972)
and Moncrieff (1978). According to (25), the difference dB
in the Bernoulli function between close streamlines is equal to
minus the Lamb vector L plus T dS, where dS is the difference
in the streamlines’ entropies.

Subtraction of the upstream evaluation of (25) from (25) it-
self gives

η =
α0η0
α

+ cp(π − π0)
dθ0

q0αdψ

= −1

2

du2
0

q0αdψ
+ cp(π − π0)

dθ0
q0αdψ

. (26)

Substituting for cp(π−π0) from (23) and using (17) then yields

η =
α0η0
α

+
α0

α
g
d ln θ0
dz0

(
z − z0
u0

+
u2 + w2 − u2

0

2gu0

)
(27)

where the first and second terms on the rhs are the barotropic
and baroclinic vorticity, respectively. Generally, wind speeds
are moderate enough to satisfy |u2 +w2 − u2

0|/2� g|z− z0|
so that

η =
α0η0
α

+
α0

α

g

u0

d ln θ0
dz0

(z − z0), (28)

which is a special case of Moncrieff and Green’s (1972) vortic-
ity equation [their equation (12)]. In the Boussinesq approxi-
mation [α = α0 = 1, q0 = 1, θ0 = constant (≡ θc) except
when multiplied by g] that is valid for shallow flows, (27) re-
duces to (Davies-Jones 2006)

η = −∇2ψ = η0 +
g

θc

dθ0
dz0

(z − z0)

u0
; q0 = 1. (29)

We can deduce the effects of environmental stratification from
(28). The first term on the rhs is exactly the barotropic y-
vorticity, ηBT , and the second term is approximately the baro-
clinic vorticity, ηBC . In a branch of flow where warm air enters



horizontally from the east (u0 < 0) with positive shear (η0 >
0), rises, and exits to the east (so that z − z0 ≥ 0), ηBT is pos-
itive. Because there is no stretching or tilting of y-vorticity, it
changes only as a result of dilatation α/α0. In the same branch,
ηBC has the opposite sign of dθ0/dz0, the environmental strat-
ification. We rule out the dθ0/dz0 < 0 case on the grounds that
the inflow would be unstable and break down into convective
rolls. As in the simulations of Markowski et al. (2003), sta-
ble stratification should be less favorable for vertical-vorticity
production than neutral stratification. This is evident from the
factor−(z− z0)dθ0/dz0 in the ηBC term. This factor is equal
to the linearized restoring force when parcels are displaced ver-
tically in a stably stratified environment (Dutton 1986, p. 71).
The resistance to lifting weakens the circulation in the x-z
plane and consequently decreases vertical vorticity because w
is proportional to ζ in (18).

4. Numerical simulation of tilting of strong environ-
mental vorticity by a powerful density current

We ran a simple numerical simulation to see if the abrupt
upward-turning of horizontal vortex tubes at a gust front could
produce significant vertical vorticity very close to the ground.
The simulation is three-dimensional, but there are no gradients
in the y-direction. In our attempt to make this happen, we
chose an extreme case (or “worst-case scenario”) with a very
strong cold pool and an environment with very large shear and
no static stability. Except for the addition of vertical shear in
the y-direction, the simulation is similar to ones made by Ro-
tunno et al. (1988; see their Figs. 19 and 20).

The dry version of the Bryan cloud model version 1 (CM1),
release 16, is used (Bryan and Fritsch 2002). The model equa-
tions are discretized on a C-grid (Arakawa and Lamb 1977)
having dimensions of 50 km × 10 km × 20 km. The domain
has rigid, free-slip top and bottom boundaries, open west and
east boundaries, and periodic north and south boundaries. The
horizontal and vertical grid spacing is 50 m. The advection
scheme is fifth-order, which has implicit diffusion. No addi-
tional artificial diffusion is included. Eddy viscosities are deter-
mined from the prognosed turbulent kinetic energy and a mix-
ing length scale (Deardorff 1972). There are no surface fluxes,
Coriolis force, or radiative transfer.

The simulation is initialized with a 5-km-deep block of cold
air within the westernmost 10 km of the domain. The mini-
mum potential temperature perturbation (found at the surface)
within the cold-air block is −12 K. The potential temperature
perturbation decreases linearly with height within the cold air.
The environment is otherwise neutrally stratified. The environ-
mental vorticity available for tilting, ξ0 = −dv0/dz, is −0.02
s−1 (Fig. 3d). This corresponds to a southerly wind shear of 20
m s−1 per km (Fig. 3b). This shear is applied over the depth
domain because v is a passive scalar and its contours serve as
vortex lines for (ξ,0,ζ). The component of environmental vor-
ticity parallel to the gust front, η0, is 0.02 s−1 in the lowest
1000 m (Fig. 3e). The northward vorticity component (i.e.,
westerly vertical shear; Fig. 3a) is included to offset the strong
southward vorticity generated solenoidally by the density cur-
rent and, hence, to maintain the density current’s almost verti-

cal leading edge in accord with the RKW discovery. There is
no zonal wind shear above 1 km.

After ten minutes, the head of the density current is still over
3 km deep with its leading edge staying steep (Fig. 3). Just
ahead of this almost vertical wall, warm air is rising rapidly
with vertical velocities in excess of 20 m s−1 located as low as
1 km above ground (Fig. 3c). The peak vertical vorticity is 0.02
s−1 and is located well aloft at 3 km (Fig. 3f). Despite the large
environmental horizontal vorticity in the lowest 1 km, the max-
imum vertical vorticity at 25 m (the lowest scalar level) in the
warm air ahead of the density current is only 1.25×10−3 s−1.
The vertical vorticity is small there even though vortex lines are
being tilted very abruptly near the surface by the nearly vertical
density current head (Fig. 3i). The reasons for this rather sur-
prising result are contained in the pressure field (Fig. 3g) and
in the ξ field (Fig. 3d). A stagnation high is present at the sur-
face at the leading edge of the density current (Fig. 3g). Thus,
warm parcels encounter an adverse pressure gradient and de-
celerate as they approach within about 2 km of the gust front.
Consequently, they are compressed in the east-west direction
(and stretched vertically to conserve mass). Owing to the east-
west compression, the westward vorticities of these parcels are
greatly reduced before the parcels encounter large gradients of
vertical velocity. The magnitude of ξ in the lowest 100 m de-
creases from 0.02 s−1 to 0.002 s−1 (Fig. 3d) by the time the
streamlines (Fig. 3h) turn upward at the density current’s lead-
ing edge. The vertical stretching of parcels implies that air rises
gradually at first about 2 km ahead of the gust front. This is
evident in the streamlines (Fig. 3h) and vortex lines (which co-
incide with v contours; Fig. 3b).

5. Summary

Based on the following line of reasoning, we conclude that tilt-
ing of horizontal vortex tubes by a gust front does not cause a
tornado. For two-dimensional (∂/∂y = 0), three-directional,
inviscid, isentropic flow in a nonrotating atmosphere, the ve-
locity component in the y direction, v, is a conservative passive
scalar. It serves as a “streamfunction” for the (ξ, 0, ζ) vector
field so the vortex lines lie in surfaces of constant v. If the
environment is horizontally homogeneous and thus devoid of
vertical vorticity and Z is the original height of a parcel, then
the vortex lines lie in constant-Z surfaces, which coincide with
the constant-v surfaces and the isentropic surfaces. Vorticity
components ξ and ζ are related by ζ = ξ(∂z/∂x)Z or v or θ .
This suggests that abrupt upturning of vortex lines by a den-
sity current or topography could produce appreciable vertical
vorticity next to the ground. However, a circulation argument
shows that, an updraft by itself cannot produce at very low lev-
els the large differences in horizontal velocity associated with
significant rotation. Differential downward transport of y mo-
mentum (or angular momentum in an axisymmetric flow) is
required.

If the flow is also steady, v and hence dv/dψ are con-
stant along a streamline. The x and z components of vorticity
and wind satisfy a Beltrami relationship, namely α(ξ, 0, ζ) =
(u, 0, w)dv/dψ so the streamlines coincide with the projec-
tions of the vortex lines onto the x-z plane. Vorticity com-
ponents ξ and ζ are related by ζ = ξ(∂z/∂x)ψ . Along a
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FIG. 3. Vertical cross-sections 10 min after a cold block is released into a neutrally stratified environment having strong westerly and southerly
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streamline with dv/dψ > 0, the maximum values of αζ and
w are collocated, and (ξ, 0, ζ) vanishes at a stagnation point.
The Bernoulli function B is constant along a streamline, so
B = cpθ0π + gz + (u2 + w2)/2 = cpθ0π0 + gz0 + u2

0/2.
At the stagnation point at the front of the density current, the
pressure is high (dubbed a “stagnation high”). Along a stream-
line, low dynamic pressure is collocated with high values of
α2(ξ2 + ζ2). Air parcels approaching the stagnation high de-
celerate in strong adverse pressure gradient and are compressed
horizontally. Along a streamline αξ is proportional to u. So,
near the surface, the horizontal vorticity available for upward
tilting is greatly reduced before it is tilted. Consequently, up-
lifting of horizontal vortex lines by a density current does not
lead to appreciable vertical vorticity just off the ground. A
time-dependent numerical simulation verifies this finding and
generalizes it to unsteady flow.

Therefore, one cannot argue that because there is large
amount of horizontal vorticity in a surface-based layer in the
environment, abrupt tilting of it at an “obstacle” (such as a gust
front or topographical barrier) will produces similar strength
vertical vorticity very close to the surface. Linear thinking (i.e.,
assuming that horizontal vorticity is unmodified from environ-
mental values) is misleading in this case because the abrupt tilt-
ing is unavoidably associated locally with a stagnation flow that
greatly compresses the horizontal vortex tubes prior to tilting.
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