Evaluation of the Relationship between NSSL MRMS Rotation Tracks and Tornadoes in Iowa

Raymond A. Wolf
NOAA/National Weather Service

Gregory J. Stumpf
CIMMS and NOAA/National Service Storms Lab

Goals

Evaluate the relationship of rotation tracks to the initiation point of tornadoes.

- Where do tornadoes typically initiate relative to the track?
- How long after a track develops does a tornado form?
- Is there a relationship between observed shear magnitude and tornado EF-scale rating?
- What is the shear distribution for observed tornadoes?
- Broaden forecaster perspective of rotation tracks from only a storm survey tool to warning decision tool.

Data

- 186 tornadoes in Iowa from 2008 May 2014
- WSR-88D-based MRMS 0-2 km rotation tracks
- Error sources
 - Reported location of tornado
 - Reported time of tornado
 - Missed tornado or false id
 - EF scale +/- 1
 - Lead time methodology is somewhat subjective (based on rotation tracks maxima)
 - Standard radar limitations

Iowa Tornadoes 2008-2014

Iowa Tornadoes 2008-2014

Defined Locations Relative to Tracks

 Tornado was associated with nearest maximum at or upstream of the tornado initiation point.

HIT

- In
- Near
- End

MISS

- Outside
- None

Supercell vs. QLCS track

94.6% of Tornadoes Associated with Tracks

Lead Time Calculation

- Begin at shear $= 0.002 \text{ s}^{-1}$
- 2 minute interval between maxima
- NOT to be confused with NWS tornado warning lead time
- Subjectivity

Tornado Lead Time Relative to Track Inception

Cumulative Shear Frequency

Shear Cumulative Frequency for Tornadic Storms

Shear Distribution for Tornadic Storms

Tornado EF Scale vs. Rotation Track Shear

Conclusions

- MRMS rotation tracks data should prove useful as an operational tool for anticipating and tracking tornadoes in real-time warning operations.
- Operational experience suggests data should be monitored in concert with single radar data, especially with the advent of SAILS.
- Low-level rotation tracks should also monitored with respect to mid-level data, particularly for supercell events where traditional downward development of rotation tends to occur. This is not as critical for QLCS events.

Future work

- Expand to Missouri and Illinois cold season events
- Evaluate potential relationships with storm mode
- Frequency of tracks with straight-line wind damage and no tornadoes?

Frequency of tracks with no tornadoes?