introduction
On 20 May 2013, a supercell thunderstorm in central Oklahoma
produced a tornado that developed west of Moore, rapidly intensified and attained EF4 intensity 3 minutes later, and eventually reached EF5 intensity (Fig. 1).
The deadly tornado tore through a heavily populated section of The deadly tornado tore through a heavily popula
Moore, killing 24 people and injuring scores of others.

OBJECTIVE
The objective of the study is to analyze and compare the detailed high-
resolution Doppler velocity and reflectivity signatures in and around resolution Doppler velocity and reflectivity signatures in and around
the tornado as viewed simultaneously from two different radars -Oklahoma City-Terminal Doppler Weather Radar (TOKC) located south

TABLE 1. Radar Operating Characteristics
Pulse Depth (m) Wavelength (cm)
Transmitted Peak Power (kW)
Half-power Beamwidth (${ }^{\circ}$)
Half-power Beamwidth (${ }^{\circ}$)
Effective Beamwidth (0) Effective Beamidith
Nyquist Velocity $\left(\mathrm{m}^{-1}\right)$ Transmitter Frequency Azimuthal Gate Spacing (${ }^{\circ}$)

TOKC	PAR
150	239
5	9.4
250	750
0.55	$1.5 \rightarrow 2.1^{*}$
1.2	$1.2 \rightarrow 2.1^{*}$
$16-22$	29
C-Band	S -Band
1.0	$0.75 \rightarrow 1.06$

*This beamwidth gradually increases to 2.1° at a 45° angle from boresight.

FIG. 1. Damage survey compiled by National Weather Center teams for the Moore, OKlahoma tornado of 20 May 2013. The EF-ratings along the damage path are contoured according to different colors.
The tornado existed for about 40 minutes over a $23-\mathrm{km}$ path. The damage path was up to 1.7 km wide.

Vincent T. Wooo ${ }^{1}$, Pamela L. Heinselman ${ }^{1}$, Rodger A. Brown ${ }^{1}$,

$\begin{aligned} & \text { TOKC } \\ & \text { (PAR) } \end{aligned}$						
$\begin{gathered} \hline \text { Time } \\ \text { [hhmm:ss] } \end{gathered}$	$\begin{gathered} R_{c} \\ {[k m]} \end{gathered}$	$\begin{gathered} z_{c} \\ {[\mathrm{~m}, \mathrm{AGL}]} \end{gathered}$	$\begin{gathered} \mathrm{BW}_{\mathrm{E}} \\ {\left[^{\circ}, \mathrm{m}\right.} \end{gathered}$	$\begin{gathered} \mathrm{BW}_{\mathrm{v}} \\ {\left[^{0}, \mathrm{~m}\right.} \end{gathered}$	$\begin{gathered} v_{\text {Ror }} \\ {\left[m s^{1}\right]} \end{gathered}$	$\begin{aligned} & \mathrm{CD} \\ & {[\mathrm{~m}]} \end{aligned}$
$\begin{gathered} \text { 2003:00 } \\ \text { (2003:09) } \end{gathered}$	$\begin{gathered} 9.08 \\ (14.40) \end{gathered}$	$\begin{gathered} 83 \\ (137) \\ \hline \end{gathered}$	$\begin{gathered} 1.2,190 \\ (1.87,471) \end{gathered}$	$\begin{gathered} 0.55,87 \\ (1.50,471) \end{gathered}$	$\begin{gathered} 53 \\ (40) \end{gathered}$	$\begin{gathered} 578 \\ (948) \\ \hline \end{gathered}$
$\begin{gathered} 2009: 58 \\ (2009: 50) \end{gathered}$	$\begin{gathered} 6.83 \\ (12.70) \end{gathered}$	$\begin{gathered} 61 \\ (120) \end{gathered}$	$\begin{gathered} 1.2,143 \\ (1.51,334) \end{gathered}$	$\begin{gathered} 0.55,66 \\ (1.50,334) \end{gathered}$	$\begin{gathered} 68 \\ (48) \end{gathered}$	$\begin{gathered} 394 \\ (595) \end{gathered}$
$\begin{aligned} & \text { 2017:35 } \\ & (2017: 22) \end{aligned}$	$\begin{gathered} 5.40 \\ (10.80) \end{gathered}$	$\begin{gathered} 48 \\ (101) \\ \hline \end{gathered}$	$\begin{gathered} 1.2,113 \\ (1.50,283) \end{gathered}$	$\begin{gathered} 0.55,52 \\ (1.50,283) \end{gathered}$	$\begin{gathered} 75 \\ (62) \end{gathered}$	$\begin{gathered} 293 \\ (430) \end{gathered}$
$\begin{aligned} & \hline 2025: 55 \\ & (2025: 34) \end{aligned}$	$\begin{gathered} 7.35 \\ (10.50) \end{gathered}$	$\begin{aligned} & 67 \\ & (98) \end{aligned}$	$\begin{gathered} 1.2,154 \\ (1.51,276) \end{gathered}$	$\begin{gathered} 0.55,71 \\ (1.50,276) \end{gathered}$	$\begin{gathered} 46 \\ (37) \end{gathered}$	$\begin{gathered} 261 \\ \left(210^{*}\right) \end{gathered}$
$\begin{aligned} & \text { 2035:00 } \\ & \text { (2035:09) } \end{aligned}$	$\begin{aligned} & 12.23 \\ & (12.49) \end{aligned}$	$\begin{gathered} 116 \\ (118) \\ \hline \end{gathered}$	$\begin{gathered} 1.2,256 \\ (1.51,329) \end{gathered}$	$\begin{gathered} 0.55,117 \\ (1.50,329) \end{gathered}$	$\begin{gathered} 31 \\ \text { (25) } \end{gathered}$	$\begin{gathered} 266^{*} \\ \left(328^{*}\right) \end{gathered}$
TABLE 2. Near-synchronous times, rotational velocity ($V_{\text {ROT }}$), core diameter (CD), range $\left(R_{d}\right)$ and height $\left(Z_{d}\right)$ to the Doppler vortex signature center, effective beamwidth ($\left.B W_{E}\right)$, vertical beamwidth (BW ${ }^{\vee}$) as calculated from TOKC and PAR at 0.5° elevation angle. Note that the parenthesis refers to the PAR data. The asterisk in the CD column indicates that the radar beam is wider than the tornado.						

Tokc has finer resolution because it is up to half the distance to the tornado
compared to PAR and its pulse depth and beamwidth (especially vertical) are compared smaller.
Most Doppler velocity peaks are not at the same range from TOKC and PAR because
target motion in the tor target motion in the tornado vortex is slightly divergent, resulting from debris
TOKC and PAR measured strongest rotational velocities exceeding 70 and $60 \mathrm{~m} \mathrm{~s}^{-1}$, respectively, in the lowest $50-100 \mathrm{mAGL}$ when the tornado was closest to the
TOKC and PAR at 2017 UTC -TOKC and PAR at 2017 UTC -- at a time when the tornado was intense.

American Meteorological Society
CNovember 2014, Madison, WI
Contact: Vincent
(3)

