High-Resolution Tornado Damage Surveys Compared to Doppler Velocity-derived Rotational Strength Parameters Kiel Ortega^{1,2}, James LaDue³, Tiffany Meyer^{1,3}, Darrel Kingfield^{1,2} ¹University of Oklahoma/CIMMS ²NOAA/OAR/NSSL ³NOAA/NWS/WDTB

Poster 178 AMS – Severe Local Storms Thursday, Nov 6, 2014 Capitol Ballroom AB (Madison, WI)

Introduction

• Can we compare tornado damage points to velocity derived rotational strength parameters? • Is there a relationship?

Matched damage points within the velocity couplet (at 0.5°)

- Radar, Scan time
- Range/Beam Height
- Lat/Lon, Storm Motion
- Max out/inbound velocities
- # Gates b/w max velocities
- EF Rating, DI & tornado width*

*Width was determined using DAT contours or from Storm Data if no contours available

radius of damage $\pi\rho c_D v^3 r^2$ rotational velocity radius of V signature $\rho = 1.2 \text{ kg m}^{-3}$ $C_{D} = 10^{-2}$

Rotational Velocity signature)

Differential Velocity Power Dissipation (using Doppler Velocity Rotational+Forward Velocity Power Dissipation (using tornado width and

Damage points outside of couplet, scan was not included

Integrated Power Calculation

For 20 May 2013 Moore EF5, the power dissipation for each EF-contour (up to EF4) was calculated for a more precise calculation of

estimation from the nearby radars (left). The general power calculation is higher than the general integrated calculation, yet the general trends match nicely.

Power Dissipation Relationships

Discussion

Fairly good general relationship between LLDV and generalized damage power dissipation values

- Power dissipation from damage is complex, dependent on multiple variables—EF-rating (which is dependent on structures damaged), tornado width, drag coefficient choice & survey quality
- However, relationship of LLDV and power dissipation is muddled when using radar to calculate power dissipation
- From Moore: More specific, integrated damage power dissipation calculations agree very closely with radar damage power dissipation estimations
- Needs more investigation; highly detailed surveys like Moore needed
- From Moore: Radars of different resolution and distance from tornado have similar power dissipation values
- Need to separate out EF-ratings by DI; will relationships hold/improve?
- Investigation of outliers needed

This poster was prepared by Kiel Ortega with funding provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement #NA11OAR4320072, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce.