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€LNoas exhibiting greater deviant motion Fig. 3: 500 m simulated reflectivity (dBZ) and surface storm-relative winds (ms) for a) no, b) moderate, and c) high
Environment: (right of the mean wind). 0-3 km hodograph curvature. Two-thermal runs are on top; one-thermal controls on bottom. All plots are T = 3 hrs.
* |nstability and hodograph parameters were representative of typical supercell
environments based on climatologies (Thompson et al., 2003; Grams et al. 2012) . . .« 1
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* |nitial vertical thermodynamic and wind profiles were generated similar to

Weisman and Klemp (1984). Only one instability case (2500 J/kg) is shown here. e Numerical simulations are utilized to understand how

instability and vertical shear modulate the relationship
between thunderstorm interaction and storm structure
and evolution.
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* Five hodographs were used, each with varying curvature in the 1-3 km layer; 0-6
km bulk shear ranges from 25 ms (straight/control) to 26.1 ms? (quarter semi-
circle)
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* Single thermal “isolated” control cases produced
supercells with more deviant (right of the mean wind)

 Winds from 3 to 6 km increase linearly and are constant above 6 km (Fig. 1).
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| [Foora 2K Thermal motion than did two-thermal runs. Secondary storms
— B / tended to dominate the primary storms.
3 6 "L . . . . . "L . . . . . * Peak updraft speeds are not significantly affected by the
. 3 6 e i e shear profile (see Fig. 4)
2 5 ’ Fig. 4: Time series of maximum updraft speed Fig. 5: As in Fig. 4, but for maximum . Peak surface vorticity is, on average, greater for cases
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* Further analyses are planned to clarify the physical
N A complimentary case mechanisms at work.
S0 s s x s study is being carried out
Fig. 1: Hodographs used for simulations. in domain. 2K secondary thermal hvsical processes leadin
Eccentricity in color (see legend) and locations will be varied. phy P 5  Repeat experiments with lower and higher CAPE

to storm intensification
after interaction.

height annotated in km. * Vary location of secondary thermal to see if the

same spatial organization versus storm intensity
relationships hold true in varied shear (i.e., compare
to Syrowski et al., 2012)

Initial storm configuration:
* Primary thermal perturbation is fixed;
initial position of 2"9 cell varies. In
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these preliminary tests, the 2-cell Grid Spacing 180 m elevation base reflectivity * Utilize trajectory analysis to help understand sources
orientation follows Syrowski, 2012 . of storm intensification and vorticity generation
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* WREF version 3.5.1 was used; S 0 R i o e dtter A ; tornadogenesis. Are microphysical process changes
settings appear at right. Integration Time 4 hours i S 2SR e TN evident from dual-pol radar? (see Fig. 6)
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