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Role of Surface in Convective 
Initiation (CI)
• Scale dependence of precipitation predictability 

is small-scale variability of low-level humidity, 
wind and temperature (Weckwerth 2000)

• Low-level convergence 15-90 minutes before CI 
(Weckwerth and Parsons 2006)

• Horizontal Convective Rolls and Misocyclones
have surface signature                                            
(e.g. Weckwerth et al. 1996, Kain et al. 2013)

• Surface observations able to constrain boundary 
layer well (Hacker et al. 2007, Hacker and Snyder 2005)



Question

How well can assimilating dense surface 
observations constrain model forecasts of 

convective initiation?



Experiments
• Directly examine the impact of surface observations on 

convective initiation, beyond the larger mesoscale

• 30 cases

• May-October, 2014

• “Air-mass” storms

absent large-scale

forcing

• ALL cases associated 

with at least one 

severe storm

report



Experiments
• Simulations with CM1 (r17) (Bryan and Fritsch 2002; Bryan 2002)

• Initialize at 12Z with real soundings

• Fixed surface fluxes

• 0.2 K random T perturbations at start

• 104km x 104km x 18km domain

• 200m resolution “truth” run  (e.g. Nowatarski et al 2014)

• 50m dz in PBL

• 1 km resolution—100 member ensemble

• 150m dz in PBL

• YSU PBL, NASA-Goddard MP and radiation 
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Object-based tracking
• Based on the Method for Object-based Diagnostic Evaluation 

(MODE) (Davis et al. 2006/2009 ; Wolff et al. 2014)

• Thresholding based on Kang and Bryan 2011



Storm Objects

Total Precipitating Storms
200m       14
1km         8-18



Surface Field Composites (1km)

• 1256 precipitating storms from 100 ensemble 
members (1km)

• Centered at location where precipitation begins

• Examine surface fields from 90 minutes before 
convective precip
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Surface Field Composites (200m)

• 14 storms from single 200m “truth” run

• Small sample size noisier
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Compositing Summary

• Observable, coherent anomalies apparent 45-60 
minutes before precipitation

• 1-2 hours speculated predictability limit 
(Droegemeier 1990, Weckwerth 2000)

• ~ 1 K temp,   1.5 m/s U,   0.1 hPa PSFC

• Consistent with observed CBL variability preceding CI

• Scale on order of 3-5 km (200m)

• Weak anomalies in moisture (not shown)

• Similar anomalies at both resolutions!



Horizontal Correlations

• Evaluate the most effective parameters for data 
assimilation

• How dense do observations need to be?

• How sensitive do observations need to be?

• To summarize impact, compute average 
ensemble correlations and regressions of 
surface variables to estimated PBL height

• Common CI criterion  HPBL=LCL (LFC for 
precip.) (Kang and Bryan 2011) 
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Correlations Summary
• Covariances capture horizontal convective roll 

structure in pre-convective environment  (~20km 
decorrelation length)

• Rapid decrease in length scale as storms begin 
developing

• After storm development, cold pool dynamics 
apparent



• Increasing availability of dense surface 
observations from a variety of sources

• Experiments with idealized ensembles show 
promise

• Observable anomalies in surface fields 45-60+ 
minutes prior to onset of precipitation

• Surface observations strongly correlate 
through the depth of the CBL at feasibly 
observable length scales

• Horizontal correlations vary with time 
ensembles!

Summary



• Complete analysis for remainder of cases

• How does correlation length scale vary with the environment?

• How long are perturbations recognizable before onset of 
precipitation?

• Cycle the ideal ensembles

• Does the data assimilation actually lead to improved forecast of 
CI?

• Will model spin-up negate impact?

• Full-scale OSSE and OSE experiments

• Can we realize improvements with large-scale dynamics 
included?

• How well do our dense surface observations live up to 
expectations?

Next Steps
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