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1. INTRODUCTION  
 
 Recent advancements in numerical 
weather prediction (NWP), including improved 
data assimilation procedures and increased 
computing power for higher resolution simulations, 
have improved the timing and location forecasts of 
dryline convection initiation (CI). Limitations still 
exist, however, due to the complexity of 
convection; small scale kinematic processes that 
are not well-resolved and microphysical 
interactions. Furthermore, the trend in NWP has 
been to translate the improvements in 
deterministic forecasting to ensemble prediction. 
The use of ensembles for dryline CI forecasts 
provides an estimate of uncertainty for the 
intensity, location, timing, and duration of severe 
storms.  
 Further improvements can be made to 
forecasts through the understanding of initial 
condition errors and their growth during model 
integration, typically achieved through sensitivity 
analysis. Adjoint sensitivity has been utilized 
(Rabier et al. 1996; Zou et al. 1998) to gain 
understanding of where perturbations in initial 
conditions have the potential to grow rapidly to 
impact a chosen forecast metric (R), or response 
function. Limitations with this method exist, 
however, including the need for the model and 
parameterizations to be differentiable, less 
accuracy for longer lead times and larger 
perturbations, and it only provides information on 
dynamic error growth; there is no information used 
regarding the likelihood of errors in the initial state. 
A newer sensitivity technique, ensemble sensitivity 
analysis (ESA; Ancell and Hakim 2007; Hakim and 
Torn 2008; Torn and Hakim 2008), has been 
shown to reveal sensitivities to weather features 
rather than perturbations alone. These weather 
features are typically collocated with errors in the 
initial conditions. Thus, the ensemble-based 
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sensitivity highlights where errors in the initial-
state, tied with the evolving weather pattern, will 
most influence the forecast. Utilizing the output 
from an ensemble of deterministic forecasts, a 
chosen scalar forecast metric can be linearly-
regressed back to the initial time, or any other 
forecast time, to reveal how the metric changes 
with perturbations in the previous states (Fig. 1). 
Ancell and Hakim (2007) illustrate that ensemble 
sensitivity is simply a result of mapping of adjoint 
sensitivity into the full initial time atmospheric state 
using ensemble covariance relationships, 
effectively identifying weather features that are 
dynamically related to the forecast metric. 
Sensitivity can be described as 
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where R is the forecast metric from all ensemble 
members (response function), xi is the initial state 
vector at a grid point, and 𝛿 represents a 
perturbation from the mean. Thus, the sensitivity is 
the slope of the linear regression between R and 
xi, or the quotient of the covariance between R 
and xi and the variance in xi.  
 Primarily, ensemble sensitivity studies 
have been concerned with synoptic scale features: 
extratropical cyclones (e.g., Ancell and Hakim 
2007; Torn and Hakim 2008; Garcies and Homar 
2009, 2010; Chang et al. 2013; McMurdie and 
Ancell 2014), extratropical transition (e.g., Torn 
and Hakim 2009; Anwender et al. 2012), and 
tropical cyclones (e.g., Torn 2010; Qin and Mu 
2011; Kunii et al. 2012; Ito and Wu 2013; Torn and 
Cook 2013; Xie et al. 2013; Torn 2014). A handful 
of studies have utilized ESA on mesoscale 
features not related to convection (Zack et al. 
2010c,a,b, 2011a,b; Bednarczyk and Ancell 2014). 
Bednarczyk and Ancell (2014) performed ESA on 
a convective case from April 2012 and showed 
strongly sensitive features aloft related to the 
synoptic parent system. The primary goal of this 
study is to demonstrate the utility of applying ESA 
to dryline convection cases over North Texas to 
highlight dynamic, mesoscale features that have 
an impact on the initiating storms.  



 
2. METHODOLOGY 
 
a. Model and Assimilation Setup 
 An ensemble of forecasts consisting of 50 
members is produced with the Weather Research 
and Forecasting (WRF) v3.3.1 model. The model 
domain consists of three one-way nested domains 
at 36, 12, and 4 km horizontal resolution (Fig. 2) 
with 38 vertical levels. The outermost domain is 
initialized from 0.5 degree resolution, interpolated 
Global Forecast System (GFS) initial conditions 
obtained from the National Centers for 
Environmental Prediction (NCEP). Boundary 
conditions are initially generated from perturbed 
GFS initial conditions to generate the ensemble 
(Torn et al. 2006), where each member maintains 
an independent boundary condition. Later BCs are 
taken from GFS forecasts. Various 
parameterizations are employed to model small-
scale, unresolved processes (Table 1). However, 
due to fine resolution (4 km), convection is 
explicitly resolved without a parameterization on 
the third domain (Bryan et al. 2003).  

The ensemble adjustment Kalman filter 
(EAKF; Anderson 2001) is employed for filtering 
with the Data Assimilation Research Testbed 
(DART; Anderson et al. 2009). To properly 
develop flow-dependent covariances a 6-hourly 
assimilation cycle is completed on all domains for 
a 48-hour period prior for forecast initialization. 
The coarsest domain is initially cycled for 24 hours 
before the 12 and 4 km domains are initialized 
using the WRF model nestdown capability and 
cycled for the remaining 24 hours. Conventional 
observations are assimilated (e.g. land-surface 
stations, METAR, satellite winds, radiosondes, 
marine, and mesonet) at all cycle times. Spatially 
and temporally adapting covariance inflation 
(Anderson 2007, 2009) is employed to account for 
under-dispersion of the ensemble. Furthermore, 
observation influences are restricted to a finite 
distance from the observation location using 
covariance localization (Anderson 2001) with the 
Gaspari-Cohn localization function (Gaspari and 
Cohn 1999).  

 
b. Analysis Methods 

The model is initialized at 0000 UTC on 15 
May 2013 and a 24-hour forecast is generated, 
valid through 0000 UTC on 16 May 2013. The 
forecast metrics chosen for analysis are maximum 
vertical velocity and average bulk shear from 0-6 
km, both valid at forecast hour 24. Vertical velocity 
aims to represent convective intensity and 
initiation while bulk shear is a proxy for convective 

mode. Both metrics are defined within a region of 
CI in north-central Texas (response region, green 
rectangle in Figs. 10-15). The metrics are 
regressed against initial conditions at the surface 
(e.g. dewpoint, temperature, pressure) and aloft 
(e.g. temperature, geopotential height) throughout 
the forecast.  
 
3. CASE STUDY 
 
 Discrete supercells developed at 2300 
UTC on 15 May 2013 over north-central Texas 
(Fig. 3). An eastward-progressing dryline was 
positioned over central Texas (Fig. 4) aiding to 
initiate storms and was well captured by the 
ensemble (Fig. 5), with discrepancies in dryline 
placement between ensemble members. Warm 
advection precipitation is evident over the Arklatex 
border in Fig. 3, which was located in 
southeastern Texas earlier in the forecast. The 
dryline progression was driven by a developing 
surface low (Fig. 6) and eastward-progressing 
upper-level trough (not shown). The ensemble 
failed to develop storms along the dryline at 
forecast hour 23 (2300 UTC), when observations 
indicated supercells initiated. However, some 
individual members did initiate one hour later (Fig. 
7), with a weak signal in the ensemble mean (Fig. 
8). By forecast hour 25 (0100 UTC), the ensemble 
was indicating a more robust signal in simulated 
reflectivity (Fig. 9).  
 
4. SENSITIVITY ANALYSIS 
 
a. Maximum Vertical Velocity 
 The 24-hour forecast of vertical velocity is 
seen to be highly sensitive to surface features 
related to advective regimes, pressure troughs, 
and warm advection precipitation. Six hours prior 
to CI, a positive sensitivity to 2-meter temperature 
exists in central Texas, just south and southwest 
of the response region (Fig. 10a). This sensitive 
area originates from southeastern Texas near the 
Gulf of Mexico and advects northwestward 
through the forecast. The sensitivity signal would 
then suggest that a general increase in 
temperature across the area would result in an 
increase in the vertical velocity forecast metric, i.e. 
more members convecting or stronger convection. 
The vertical velocity forecast also appears to be 
highly sensitive to the developing surface pressure 
trough (Fig. 10b). A large swath of negative 
sensitivity to sea level pressure is evident in Fig. 
10b along the pressure trough axis indicating that 
a deeper pressure field, which would increase the 
horizontal pressure gradient, may contribute to 



higher vertical velocities just six hours later at CI. 
One way to assess these sensitive features is by 
evaluating the differences between ensemble 
members, a technique used by Bednarczyk and 
Ancell (2014). Analyzing the difference in 2-meter 
temperature between a convecting and non-
convecting ensemble member at forecast hour 18 
shows a primary difference in southeastern Texas, 
extending northward into eastern Texas (Fig. 10c). 
This area was laden with warm-advection 
precipitation during this period and earlier in the 
forecast. The differences between members is 
highlighting the positional shifts of the precipitation 
and resulting cold pools. The convecting member 
has a southeastward shift of the precipitation, 
closer to the coastline, resulting in a warmer 2-
meter temperature field farther into central Texas 
and cooler temperatures near the coast. 
Furthermore, using hydrostatic relationships, we 
see the same signal in the sea level pressure 
differences between the same members (Fig. 
10d). A southeastward shift of precipitation in 
convecting members would produce a stronger 
cold pool towards the Texas coast resulting in 
higher surface pressure and vice versa inland. It is 
highly possible that the position of warm advection 
precipitation is having an impact on which 
members are producing convection six hours later. 
However, more in-depth analysis would need to be 
completed to sufficiently prove this interaction, 
which is not a primary goal of this study. Rather, 
the purpose of this study is to show the utility of 
ESA to highlight these mesoscale features.  
 Aloft, the vertical velocity forecast is 
sensitive to advective temperature regimes near 
the capping inversion level and upper-level trough 
placement and strength. At 700 mb, a negative 
sensitivity exists to temperature that emanates 
from West Texas early in the forecast towards the 
response region by CI (Fig. 11). The sensitive 
region is coherent spatially and temporally 
throughout the entire forecast. Just prior to CI, a 
capping inversion is in place over the response 
region at approximately 700 mb (not shown). The 
temperature sensitivity at hour 24 (Fig. 11f) would 
then suggest that a decrease in strength of the 
cap would promote stronger vertical velocities. 
Because the temperature sensitivity is traceable 
back to the beginning of the forecast, the ESA is 
highlighting an important advective feature aloft 
that could have a large impact on the initiation of 
convection. Furthermore, the vertical velocity 
forecast is sensitive to the position and magnitude 
of the upper-level low, as seen through the 
geopotential height fields six hours prior to CI (Fig. 
12). A swath of negative sensitivity is evident in 

the base of the troughs at 300 and 500 mb (Fig. 
12a,b), indicating that a deeper magnitude or more 
southward positioned trough would promote 
stronger vertical motion. A general area of 
negative (positive) sensitivity south (north) of the 
low center at 700 mb would indicate a positional 
sensitivity as well (Fig. 12c). At 850 mb the 
pressure trough is not well developed in the 
southern plains but a positional sensitivity is still 
apparent in the Oklahoma and Texas panhandle 
regions (Fig. 12d). An additional positive sensitivity 
south of the response region at 850 mb is a result 
of the previously mentioned warm advection 
precipitation influencing the height of the 850 mb 
pressure level. It is noted that a convecting 
member tended to displace precipitation earlier in 
the forecast towards the Texas coastline. The 
displacement resulted in higher 2-meter 
temperature and lower sea level pressure farther 
inland (Fig. 10c,d). Thus, a warmer (cooler) 
surface temperature in central (coastal) Texas 
would correspond to a higher (lower) 850 mb 
pressure level height, which is seen in Fig. 12d.  
  
b. Average Bulk Shear 
 Sensitivity analysis is also performed on 
the forecast of average bulk shear in the response 
region at forecast hour 24. Bulk shear is chosen 
as a forecast metric because it can be used as a 
proxy for storm mode, where discrete supercells 
initiating along the dryline are favored in high 
shear environments. At the surface, the forecast is 
sensitive to 2-meter dewpoint six hours prior to CI 
(Fig. 13a) to the west and southwest of the 
response region. The region of sensitivity exists 
within the area of the developing dryline. The 
positive sensitivity suggests that a moistening of 
the atmosphere near the response region would 
increase the bulk shear magnitude. This can be 
explained because of increased confluence with a 
strengthening dryline near the surface. Pressure 
sensitivities also exist (Fig. 13b) in the domain of 
interest. Negative sensitivity is present near the 
developing surface low center while positive 
sensitivity covers the majority of Texas. The 
sensitivity signal would indicate that a 
strengthening surface pressure gradient would 
increase the shear forecast, a result of stronger 
return flow from the Gulf of Mexico across the 
domain.  
 Sensitivities also exist aloft, similarly to the 
forecast of maximum vertical velocity. A strong 
signal of positive sensitivity to 700 mb temperature 
propagates from West Texas to the response 
region by CI (Fig. 14). The sensitivity is coherent 
for the entire forecast, which is indicative of a 



strong dynamic feature that could have an impact 
on the forecast. Noticeable to the west of the 
positive sensitivity is a region of negative 
sensitivity. The two are coupled and represent 
sensitivity to horizontal temperature gradients at 
700 mb. An increase in the horizontal temperature 
gradient would increase the vertical wind shear 
through a stronger geostrophic response. 
Moreover, the shear forecast is strongly sensitive 
to the position of the upper level trough placement. 
A strong positional sensitivity is evident at 500 mb 
in Figure 15. Positive (negative) sensitivity to the 
east (west) illustrate that a shift westward would 
promote stronger shear because of a 
displacement of a jet maxima over the response 
region by forecast hour 24.  
 
5. SUMMARY AND DISCUSSION 
 
 Ensemble sensitivity analysis has been 
applied on a dryline convection case from 15 May 
2013. Forecasts of maximum vertical velocity and 
average bulk shear at convective initiation show 
sensitivities to features at the surface and aloft. 
Vertical velocities are sensitive to advective 
regimes of surface temperature from the Gulf of 
Mexico, which are coherent 0-12 hours prior to CI. 
A surface pressure trough is also highlighted as a 
sensitive feature. Moreover, the vertical velocity 
forecast appears highly sensitive to the placement 
of warm advection precipitation. Analysis of 
differences between convecting and non-
convecting ensemble members illustrates that the 
precipitation and resulting cold pools may be 
having an impact on which members are 
convecting. The bulk shear forecast also was 
shown to be sensitive to the strength of the 
developing dryline and surface pressure trough. 
Stronger pressure gradients would result in more 
confluence and return flow at the surface, 
increasing the shear forecast to favor more 
discrete supercell development along the dryline. 
Additionally, sensitivities are evident along the 
dryline indicating a stronger dryline gradient, as a 
result of stronger surface confluence, would 
increase the shear magnitude. Both vertical 
velocity and shear showed sensitivities to upper 
level temperatures and troughs. A negative 
sensitivity to 700 mb temperature existed for 
vertical velocity forecasts indicating that a 
reduction in the capping inversion strength would 
favor stronger vertical velocity, i.e. more intense 
convection. The shear forecast was also shown to 
be sensitive to horizontal gradients in the 700 mb 
temperature field. Both magnitude and positional 
sensitivities were seen in the geopotential height 

fields, where slight differences in strength and 
position of the upper level troughs could impact 
the forecasts. Sensitivities aloft were traceable 
back to the beginning of the forecast, present 0-24 
hours prior to CI versus the 0-12 hour sensitivity 
signals seen at the surface. 
 Linear relationships are assumed between 
the response functions and initial conditions. Thus, 
for longer forecast times, more linear forecast 
metrics are required. On synoptic scales where 
ESA has been applied more in the literature, these 
relationships are more valid. However, even on 
the mesoscale where non-linearity plays a larger 
role, especially with convection, this study has 
shown that ESA still has the ability to highlight 
important features that may have an impact on the 
forecast. ESA provides forecasters with an 
understanding of how initial condition errors may 
evolve onto the forecast. Furthermore, 
improvements to the forecasts can be achieved 
through observation targeting techniques 
developed from ESA theory (Ancell and Hakim 
2007). The targeted observations are chosen 
based on their expected change to the forecast 
variance.  However, issues still exist with 
observation targeting on the mesoscale due to the 
non-linear evolution of the atmosphere on these 
scales. The role of adaptive observing for 
convective forecasts using ESA techniques will be 
explored in future studies.  
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Parameterization Type Scheme 
Boundary Layer Yonsei University 
Cumulus Convection* Kain-Fritsch 
Land Surface Noah Land-Surface Model 
Long-Wave Radiation Rapid Radiative Transfer Model 
Short-Wave Radiation Dudhia 
Microphysics Thompson 
*Convection is explicitly resolved on 4 km domain 
 
Table 1 – Model parameterizations used to account for small-scale processes not resolved with coarser 
grid resolutions.  
 

 
Figure 1 – Scatter (blue circles) of maximum reflectivity (dBZ) in a defined region against 850 mb 
geopotential height (m) at a grid point and their fitted linear regression (green line). The calculated slope 
represents the value of sensitivity at the grid point. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – WRF domain configuration with outermost domain at 36 km, d02 with 12 km, and d03 with 4 
km grid resolution. Modeled after the Texas Tech University real-time ensemble system. 
 

 



 
 
Figure 3 – Radar composite (dBZ) valid at 2300 UTC 15 May 2013 courtesy of UCAR/NCAR/MMM image 
archive available through http://locust.mmm.ucar.edu/ 
 

 
 
Figure 4 – Weather Prediction Center surface analysis valid at 0000 UTC 16 May 2013 
 



 
 
Figure 5 – Ensemble mean forecast of 2-meter dewpoint (F, shaded and contoured every 3 F) valid at 
0000 UTC 16 May 2013. Black dashed line is the subjective placement of the dryline based on individual 
members.  
 

 
 
Figure 6 – Ensemble mean forecast of sea level pressure (mb, contoured every 2 mb), 2-meter 
temperature (F, shaded), and 10-m winds (barbs) valid at 2300 UTC 15 May 2013. Black dashed line is 
the same as in Fig. 5. 

 

 



 
 
Figure 7 – Composite reflectivity (dBZ, shaded) for a selection of convecting ensemble members valid at 
0000 UTC 16 May 2013.  
 
 
 



 
 
Figure 8 – Ensemble mean composite reflectivity (dBZ, shaded) valid at 0000 UTC 16 May 2013. 
 

 
 
Figure 9 – Same as Fig. 8, valid at 0100 UTC 16 May 2013. 
 



 
 
Figure 10 – Sensitivity of maximum vertical velocity at forecast hour 24 in the green rectangle to (a) 2-
meter temperature (m s-1 oC-1, shaded) and (b) sea level pressure (m s-1 mb-1, shaded) at forecast hour 
18. Ensemble mean fields are contoured every 2 oC and 3 mb, respectively. (c) 2-meter temperature (oC, 
shaded) and (d) sea level pressure (mb, shaded) difference between a chosen convecting and non-
convecting member at forecast hour 18.  
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Figure 11 – Sensitivity of maximum vertical velocity at forecast hour 24 in the green rectangle area to 700 
mb temperature (m s-1 oC-1, shaded) at forecast hours (a) 9, (b) 12, (c) 15, (d) 18, (e) 21, and (f) 24. 
Ensemble mean temperature contoured every 2 oC.  
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Figure 12 - Sensitivity of maximum vertical velocity at forecast hour 24 in the green rectangle area to (a) 
300, (b) 500, (c) 700, and (d) 850 mb geopotential height (m s-1 m-1) at forecast hour 18. Ensemble mean 
geopotential heights are contoured every 20 m. 
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Figure 13 – Sensitivity of average bulk shear at forecast hour 24 in the green rectangle area to (a) 2-
meter dewpoint (m s-1 oC-1, shaded) and (b) sea level pressure (m s-1 mb-1) at forecast hour 18. Ensemble 
mean fields are contoured every 2 oC and 3 mb, respectively.   
 
 
 

  
 
Figure 14 – Sensitivity of average bulk shear at forecast hour 24 in the green rectangle area to 700 mb 
temperature (m s-1 oC-1, shaded) at forecast hours (a) 9, (b) 12, (c) 15, and (d) 18. Ensemble mean 
temperature contoured every 2 oC. 
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Figure 15 - Sensitivity of average bulk shear at forecast hour 24 in the green rectangle area to 500 mb 
geopotential height (m s-1m-1, shaded) at forecast hours (a) 9, (b) 12, (c) 15, (d) 18, (e) 21, and (f) 24. 
Ensemble mean heights contoured every 20 m. 
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