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1. Introduction
To clarify mechanisms of supercell tornadogenesis, it is useful to perform statistical analyses using

ensemble forecasts of observed tornadoes. In the present study, we carried out 33-member ensemble
forecasts with 50-m horizontal resolution for a supercell tornado in Japan on 6 May 2012. With
ensemble-based analyses, we examined which variables are important for the tornadogenesis.
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Friction contributes dominantly to change the circulation ˁ
(baroclinic term is small), but does not necessarily increase ˁ.
ൺ�Tornado strength does not depend on the origin of circulation.
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Which is more important 
for tornadogenesis, 
baroclinity[3] or friction[4]?
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