High-resolution Ensemble Experiments for the Tsukuba City Supercell Tornado in Japan on 6 May 2012

Sho YOKOTA, 1,2 Hiromu SEKO, 1 Masaru KUNII, 1 Hiroshi YAMAUCHI, and Hiroshi NIINO 1 (Meteorological Research Institute, JMA; 2JAMSTEC, 3Observations Department, JMA; 4OIRI, The University of Tokyo)

1. Introduction
To clarify mechanisms of supercell tornadogenesis, it is useful to perform statistical analyses using ensemble forecasts of observed tornadoes. In the present study, we carried out 33-member ensemble forecasts with 50-m horizontal resolution for a supercell tornado in Japan on 6 May 2012. With ensemble-based analyses, we examined which variables are important for the tornadogenesis.

2. Data Assimilation with Nested-LETKF System

- Outline of nested-LETKF system
 - 5/3, 09JST
 - 5/6, 03JST
 - 5/6, 09JST
 - 5/6, 13JST
- Distribution of radars and dense surface observations
- Polarimetric Doppler radar (radial wind was assimilated)
- Distribution of surface observations

3. Forecasted Tornado

- #1 (Member with strongest max. vorticity at $z^*=30m$)
 - Colored: temperature at $z^*=1.5m$ (K)
 - Cloud water mixing ratio $\sim g$ kg$^{-1}$
 - Vertical vorticity $>0.2s^{-1}$
 - Vertical vorticity $>0.6s^{-1}$
 - Arrows: horizontal wind at $z^*=30m$ (m s$^{-1}$)

4. Origin of Tornado Circulation

- Circulation and baroclinic and friction terms of backtracked circuits
- Friction contributes dominantly to change the circulation Γ (baroclinic term is small), but does not necessarily increase Γ.
 → Tornado strength does not depend on the origin of circulation.

5. Correlation of Tornado Strength

- Scatter plot of vorticity and water vapor 3-min before the time of max. strength
- Time from max. vorticity at $z^*=30m$ [min]
- Low pressure associated with strong mesocyclone
- Large buoyancy because of low LFC associated with humid parcel

Acknowledgement
This work was supported in part by the research project “HPCI Strategic Program for Innovative Research (SPIRE) Field 3,” “social and scientific priority issues (Theme 4)” to be tackled by using the K computer of the FLAGSHIP2020 Project: “Tokyo Metropolitan Area Convective Study for Extreme Weather Resilient Cities (TOMACS),” a Grant-in-Aid for Scientific Research (A) 24244074, and the Cooperative Program (No. 131, 2014; No. 136, 2015; No. 138, 2016) of Atmosphere and Ocean Research Institute, The University of Tokyo. Experiment with 350m and 50m horizontal resolution were conducted using the K computer at the RIKEN Advanced Institute for Computational Science through the HPCI System Research Project (Project ID: hp120282, hp130012, hp140220, hp150214, hp150289, hp160229). Observations were from JMA and NTT DOCOMO, Inc.

References