High-resolution Ensemble Experiments for the Tsukuba City Supercell Tornado in Japan on 6 May 2012
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1. Introduction 4. Origin of Tornado Circulation

To clarify mechanisms of supercell tornadogenesis, it is useful to perform statistical analyses using Circulation(/") Ba ro clinic Eriction  Potential temperature (K) and isobar (every 5 hPa) at z*=30m |
ensemble forecasts of observed tornadoes. In the present study, we carried out 33-member ensemble D (when vorticity exceeded 0.6 ™)

I~ was calculated on circuits backtracked

forecasts with 50-m horizontal resolution for a supercell tornado in Japan on 6 May 2012. With|| — = § +§F dl from these circles (radlus 100m, z*=30m)
ensemble-based analyses, we examined which variables are important for the tornadogenesis. Dt ¢ : . ;
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