102

Comparison of the SPC Storm-Scale Ensemble of Opportunity to other Convection-Allowing Ensembles for Severe Weather Forecasting

Introduction

- the 2016 NOAA HWT Spring Forecasting Experiment (SFE2016) from 2 May 3 June. The ensembles were evaluated objectively on reflectivity forecasts and subjectively on

Israel Jirak¹, Chris Melick^{1,2}, and Steven Weiss¹ ¹NOAA/NWS/NCEP Storm Prediction Center, ²Cooperative Institute for Mesoscale Meteorological Studies

Three convection-allowing ensembles from the Community-Leveraged Unified Ensemble (CLUE) were compared to the SPC Storm-Scale Ensemble of Opportunity (SSEO) during hourly maximum field (HMF) forecasts (e.g., updraft helicity) for severe weather guidance.

Results of Ensemble Forecast Verification and Evaluation

Objective verification was performed for the ensemble neighborhood probability of 1-km AGL simulated reflectivity \geq 40 dBZ using observed radar reflectivity for verification. Ensemble maximum and neighborhood probabilities of HMF fields (typically UH) were

- probabilistic reflectivity forecasts \geq 40 dBZ during SFE2016.

- operational convection-allowing ensemble.

Acknowledgements

National Severe Storms Laboratory (NSSL): Adam Clark, Jack Kain, Kent Knopfmeier, Scott Dembek National Center for Atmospheric Research (NCAR): Glen Romine, Craig Schwartz, Ryan Sobash Center for Analysis and Prediction of Storms (CAPS): Ming Xue, Fanyou Kong, Kevin Thomas

subjectively evaluated for correspondence with severe weather reports from 18-02Z.

The diversity of the SSEO appears to help in reducing the overforecast bias (i.e., underdispersive nature), leading to improved probabilistic forecasts over other ensembles. The SSEO can serve as a meaningful baseline for the performance of a future