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Introduction
• Data assimilation techniques are designed to produce accurate initial model fields by

minimizing deviations from observations while also limiting imbalances that can lead to,
for example, spurious gravity waves.

• One such technique is incremental analysis updating (IAU; Bloom et al. 1996).
• IAU acts to minimize the “shock” to the model state by gradually updating the model

fields during the data assimilation window.
• Brewster et al. (2015) and Brewster and Stratman (2016) expand on the original IAU

method by allowing for variable-dependent, temporally-weighted distributions of the
increments of the model state variables.

• Both studies determine that introducing the majority of the hydrometeor increments
after the temperature, water vapor, and wind increments results in stronger vertical
velocities and preserves larger graupel and hail mixing ratios.

• Another data assimilation technique used by real-time forecast systems is a cycled
analysis-forecast strategy with multiple periods of data insertion.

• Test case: 1-km forecasts of 24 May 2011 tornadic supercells, which devastated parts of
Oklahoma.

Experiment Design
• 5 data assimilation techniques tested:

• OrigIAU – increments added every 20 s using the original IAU technique (a)
• Cycling – two 5-min original IAU windows (b)
• ModIAU – increments added every 26 s using the modified IAU technique with 

variable-dependent increment distributions (c)
• CyModIAU – two 5-min modified IAU windows (d)
• NoIAU – no IAU window or cycling

• After the IAU/cycling process, simulations integrated forward for 120 min.
• Assimilated observational data using 3DVAR and complex cloud analysis:

• NWS METAR and Oklahoma Mesonet data
• WSR-88D radar data (KTLX, KFDR, KVNX, KICT, KDDC, KFWS, and KINX)
• Collaborative Adaptive Sensing of the Atmosphere (CASA) IP-1 radar data (KCYR, 

KSAO, KWE, and KRSP; McLaughlin et al. 2009)
• Some model details:

• Advanced Regional Prediction System (ARPS), developed at CAPS
• 323×353 grid-point domain with 53 vertical levels
• 1-km horizontal grid spacing
• Minimum vertical grid spacing of 20 m
• dtbig = 2.0 s and dtsml = 0.5 s 
• 12-km NAM model output used for background fields and lateral BCs
• Milbrandt and Yau double-moment bulk microphysics (Milbrandt and Yau 2005a,b)

Verification Techniques
• RMSE computed and averaged using Oklahoma Mesonet data.
• Fractions skill score (FSS) computed and averaged for composite reflectivity at three 

thresholds using the neighborhood technique with several window sizes (i.e., scales).
• An object-based verification technique is used to verify simulated 0–1-km UH (0-1UH) 

centers with estimated tornado locations for three storms of interest by computing 
same-time (ST) and any-time (AT) distance and timing errors.

• A search radius of 4 km is used to isolate 1–6-km (0–1-km) UH maxima that are greater than or 
equal to 300 m2 s-2 (15 m2 s-2 ) and their surrounding grid point values. A max UH value is 
considered a UH-center candidate if 4 out of 8 (1 out of 8) of the adjacent grid point values 
equals or exceeds 150 m2 s-2 (10 m2 s-2 ). The UH-weighted center is then computed using a 
radius of 3 km (2 km) extending from the grid point with the max UH value. The 0–1-km UH-
weighted centers are filtered by requiring a 1–6-km UH-weighted center to concurrently exist 
within 5 km.

RMSE Results
• Relative to the OrigIAU runs, the modified IAU 

technique yields larger temperature errors, 
while cycling tends to produce slightly smaller 
temperature errors.

• Cycling and modified IAU techniques 
contribute to a small reduction in dewpoint 
temperature errors. However, the NoIAU runs 
had smaller errors than the other runs, except 
for the CyModIAU runs.

• Even though the NoIAU runs generally have 
the smallest u-wind errors, the cycling and 
modified IAU techniques both contribute to 
reduced u- and v-wind errors relative to the 
OrigIAU runs.

FSS Results
• At 30 dBZ, the ModIAU runs exhibit the best 

skill at all scales, while the Cycling runs exhibit 
the worst skill at all scales. This finding is 
consistent for most model initialization times.

• At 40 dBZ, the findings are mostly the same as 
at the 30-dBZ threshold, but the differences 
among the runs are smaller. The ModIAU runs 
substantially outperform the other runs at the 
2030 and 2100 UTC model initialization times.

• At 50 dBZ, the OrigIAU runs exhibit the best 
skill at all scales, while the CyModIAU (Cycling) 
runs perform the worst at the smaller (larger) 
scales. The OrigIAU and ModIAU runs perform 
similarly for most model initialization times.

• Some of the successes and failures can be 
attributed to the amount of overforecasting 
the areal coverages of reflectivity. 

• For example, the ModIAU runs overforecasted
the least at the 30- and 40-dBZ thresholds, 
aiding in better skill scores.

• Conversely, the Cycling runs overforecasted
the most at all thresholds, contributing to 
mostly poor skill scores, esp. at 30 and 40 dBZ.
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0-1UH Centers Results
• High density of 0-1UH centers near S1’s 

tornado locations, especially for the first two 
tornadoes.

• A dense coverage of 0-1UH centers generally 
exists along and north of S2’s tornado 
locations.

• The number of 0-1UH centers near S3’s 
tornado locations is substantially lacking.

• Cycling leads to a larger number of 0-1UH 
centers for the Cycling and CyModIAU runs.

• Conversely, the modified IAU technique results 
in a reduction in the number of 0-1UH centers.

• Even though a goal of the modified IAU 
technique is to better retain updrafts, the 
ModIAU and CyModIAU runs generally yield 
weaker 0-1UH centers as compared to the 
other runs.

Object Based Verification: Storm 1
• Excellent forecast by all.  All of the runs depict 

same-time distance errors less than 12 km and 
any-time distance and timing errors less than 9 
km and 14 min, respectively.

• The Cycling runs have the most number of 0-
1UH centers near S1, while the ModIAU runs 
have the fewest.

• All of the runs have a fairly even north-south 
distribution of any-time 0-1UH centers, except 
for the ModIAU runs, which tend to be a little 
too far north.

• The NoIAU runs yield the smallest same-time
and any-time distance and timing errors but by 
very small margins.
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Object Based Verification: Storm 2
• Good results for all, with any-time distance 

errors mostly less than 10 km and CyModIAU
runs performing the best.

• The ModIAU runs yield the smallest any-time
timing errors, but all of the runs mostly have 
errors less than 15 min.

• All of the runs produce a similar number of 
same-time 0-1UH centers near S2 with a 
tendency for the centers to be too far north.

• The any-time 0-1UH centers also depict this 
northward-bias. The Cycling runs result in the 
fewest centers.

• On average, the ModIAU runs have the 
smallest same-time distance errors.

Object Based Verification: Storm 3
• Complex storm interactions yield less success 

in forecasting Storm 3. The CyModIAU runs 
mostly yield the smallest same-time and any-
time distance errors, though produce a smaller 
number of 0-1 UH centers than Cycling.

• The Cycling runs result in the smallest any-time
timing errors with errors less than 10 min.

• All of the runs tend to produce any-time 0-1UH 
centers too far south. However, this result is 
due to the simulations picking up a non-
tornadic supercell that existed ~30 km to the 
south of S3 in reality.

• Note, several runs fail to predict anything for 
S3 when tornadoes are occurring.

Conclusions and Future Work
• The choice of data assimilation technique has some impact to 1-km forecasts of surface 

variables, composite reflectivity, and location and timing of low-level circulations.
• The Cycling, ModIAU, and CyModIAU runs all show signs of improving forecasts of 

convection-related variables, especially low-level circulations.
• In many of the RMSE and object-based metrics, the NoIAU runs performed better than 

the OrigIAU runs, but differences among methods are very small.
• Additional work needs to be done in fully understanding these results by looking closer at 

adjustments happening during and soon after the assimilation windows.
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