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Introduction

We address the energy balance in a thunderstorm, in particular,
how energy is redistributed on a local level inside a tornadic flow.

The Main Goal

To find a correct thermodynamic energy formula in a local
form to adequately describe the behavior of an air parcel in
a tornado-like flow
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Motivation

• Rotunno, [2015]: “ . . . there is a strong nexus with
thermodynamics, because these thunderstorms are
driven by the phase change of water vapor. There are lots
and lots of things other than pure fluid dynamics in this
field. It is a very rich subject. ”

• Doswell et al., [2006]): " . . . forecasters and researchers
are seeking a “magic bullet” when they offer up yet
another combined variable or index for consideration . . . "

Thermodynamic System

Figure 1: Balance Diagram

Global Reversible Thermodynamics

Equation of state: S = S(A1, A2, . . . An), S is entropy, Ai are
the independent extensive variables, that fully determine the
state of the system. If the change happens infinitely slowly,
then system moves to a different equilibrium state according to

dS =
∑

Fi dAi

Fi are the corresponding conjugate intensive variables (forces),
d stands for the (material) change in variables in the system
under consideration.
Example: S = S(U, V ) where U is the internal energy and
V is the specific volume. For the ideal gas, dS = (1/T )dU +
(P/T )dV where T is the temperature and P is pressure.

Local Irreversible Thermodynamics

We employ the Local Equilibrium Hypothesis where state
of air parcel depends on position x and time t

ds(x, t) =
∑

Fi(x, t) dai(x, t),
s is specific S (per unit mass), and ai is specific Ai (per unit
mass), d is material change in variables in the air parcel.

Local Dynamics

Differentiating along the path of the parcel that moves with the
velocity field u:

Ds(x, t)
Dt

=
∑

Fi(x, t)
Dai(x, t)
Dt

,

D/Dt = ∂/∂t + u · ∇

Extended Irreversible Thermodynamics

The state of the system may include non-equilibrium variables,
more precisely, thermodynamic fluxes bj(x, t). Then
ds(x, t) =

∑
Fi(x, t) dai(x, t) +

∑
Gj(x, t) dbj(x, t),

where bj(x, t) have to satisfy the appropriate transport equa-
tions. If the heat flux q(x, t) is governed by Cattaneo equation

τ
∂q
∂t

= −(q + λ∇T ),

where λ is Fourier’s Law constant and τ is relaxation time, then

ds = ∂s

∂u
du + ∂s

∂q
· dq (1)

where u is the internal energy density, ∂s/∂u = 1/T is the
reciprocal equilibrium temperature, and θ = ∂s/∂q is the non-
equilibrium (vector) “reciprocal” temperature.

Internal Variables Thermodynamics

Internal Variables ck(x, t) are introduced to compensate for lack
of knowing the behavior of the system. It does not have the
corresponding conjugate forces that can be directly calculated.
Then

ds(x, t) =
∑

Fi(x, t) dai(x, t) +
∑

dck(x, t),

Rational Thermodynamics

In this case we do not assume an a priori constitutive equation.
Conservation of energy and linear momentum for each control
volume remain to be valid. Then the balance equations and
Clausius–Duhem’s inequality:

∂ρ

∂t
+∇ · (ρu) = 0,

ρ
∂u
∂t

+∇ · (stress) = 0,

ρc
∂T

∂t
+∇ · q = 0,

ρ
∂s

∂t
+∇ · q

T
− ρr
T
≥ 0,

where ρ is the density, c is the specific heat, and r is the internal
heat source.
Axiom of Local Action: An air parcel is only influenced by
its immediate neighborhood in space and time, so higher-order
space and time derivatives are excluded from the constitutive
relations. Its validity is controversial as it ignores “memory”.

Mesoscopic Thermodynamics

Mesoscopic approach appreciates limitations of the local equi-
librium hypothesis and takes into consideration fluctuations of
thermodynamic variables. Statistical entropy S = k lnW , W is
the number of microstates corresponding to a macrostate with
the specific value of S. The probability of such a macrostate
(Einstein, [3]) is proportional to

Mesoscopic Thermodynamics

W ≈ exp(S/k).
If fluctuation is associated with entropy change ∆S we can
write

Probability of Fluctuation ≈ exp(∆S/k).
Einstein’s formula underwent a range of generalizations, in par-
ticular, for the thermodynamic fluxes to be included it requires
for any thermodynamic variable ρ(x, t) - not necessarily density
- with the associated current j(x, t), and the mobility χ(ρ) to
be

Probability of Fluctuation ≈ exp
(
− B

kT

)
,

where
B =

∫
dt
∫
dx(j− J(ρ)) · χ(ρ)−1(j− J(ρ))

and where J(ρ) is a hydrodynamic flux of ρ. The derivation and
justification with the references is given in [4]. The evolution of
a system subject to macroscopic fluctuations has to satisfy

∂ρ

∂t
+∇ · j(t) = 0, J(ρ) = −D(ρ)∇ρ,

j(t) = J(ρ) + χ(ρ)E(t).
So

∂ρ

∂t
+∇ · χ(ρ)E(t) = ∇ · (D(ρ)∇ρ) .

where D(ρ) is a diffusion matrix and E(t) is the external field.
Local Equilibrium implies that

D(ρ) = χ(ρ)f ′′(ρ)
where f is the (local) Helmholtz free energy per unit volume.
These equations can be justified using microscopic stochastic
dynamics [5].

Thermodynamic Fluxes

According to [6] in a thin horizontal layer of tornado-like flow
the Helmholtz free energy density of an air parcel is defined by

f̂ (t) = f (θ(t, ξ(t)), v(t), t)
where θ is non-equilibrium temperature defined in (1), ξ(t) is a
vector of parameters. Then, neglecting explicit dependence on
time t we have

df

dt
= −sdθ

dt
− pdv

dt
− s∂θ

∂ξ

∂ξ

∂t
(2)

It can be proven that if ξ are linear functions of ∇u, then
(2) is compatible with Navier-Stokes governing equations [6].
Solutions of (2) also are particular solutions of the Kuramoto–
Tsuzuki system of equations of motion in a plane layer [6]:
du1

dt
= ν1∆u1 − ν2∆u2 + qu1 − (α1|u|2u1 − α2|u|2u2) (3)

du2

dt
= ν1∆u2 + ν2∆u1 + qu2 − (α1|u|2u2 + α2|u|2u1) (4)

where ∆ is the Laplacian in 2-D, and ν1, ν2, q, α1, and α2 are
the parameters describing the air parcel at the altitude h. (3)
and (4) can be combined in a vector equation for a complex
velocity Φ = u1 + iu2

dΦ
dt

= ν1(1 + ic1)∆Φ + qΦ− (α1(1 + ic2)|Φ|2Φ

that has a plane wave solution
Φ(x, y, t) = R(x, y) exp(iωt + ia(x, y))

or a spiral-wave solution (cf. [6]).

CAPE, 06/17/2010, Minneapolis

Figure 2: CAPE evolution

SRH, 06/17/2010, Minneapolis

Figure 3: SRH evolution

Vertical vs Horizontal Scales

Non-equilibrium thermodynamics of condensation in the upper
portion of the flow would have to take into consideration the
pressure drop due to condensation as equations of motion do
not explain the downdraft inside the vortex core ([7]). In case
of infinitely slow simplified model we can use Clausius-Clapeyron
relation ∆p = L∆θ/(θ∆v) where L is the latent heat of con-
densation. So with the additional term (2) becomes

df

dt
= −sdθ

dt
− pdv

dt
− s∂θ

∂ξ

∂ξ

∂t
− d

dt
(v∆p)

Summary

We described the integrated parameters CAPE and SRH as
thermodynamic fluxes associated with a non-equilibrium air
parcel in a thunderstorm and their contribution to the free
energy density formula. It is not yet clear if this formula
incorporates all macroscopic fluctuations associated with a
non-equilibrium state.
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