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I. Introduction 

• Cold season defined as the months of December, January, and February

• Tornadogenesis in the southeastern United States often occurs under a 
broader range of conditions than other regions

• High-Shear Low Cape (HSLC) events pose major operational forecasting 
challenges

• Both Quasi-Linear Convective System (QLCS) and supercell convective 
modes have been observed under HSLC conditions



II. Background and Motivation

• Parameterization of the convective boundary layer via Numerical Weather 
Prediction (NWP) (Cohen et al. 2015)

-Cloud top mixed layers are especially challenging 

• Lifted Condensation Level (LCL) height and its role in HSLC environments 
(Rasmussen & Blanchard 1998)

• Low level thermodynamic characteristics in southeastern U.S. tornado 
events (Jackson & Brown 2009)

• Differences between LCL height and observed cloud base height (Craven et 
al. 2002)

• Importance of boundary layer relative humidity in tornadogenesis
(Markowski & Richardson 2008)



III. Methodology 

• Lidar ceilometer (University of Alabama in Huntsville (UAH) & NOAA ASOS 
datasets) - cloud base height, cloud fraction 

• Doppler wind lidar - boundary layer profiles of wind

• 915 MHz wind profiler - turbulence (e.g., variance of vertical motion) 

• Microwave profiling radiometer - water vapor 

• Radiosondes

• Current cases: Alabama, Mississippi, Louisiana, Georgia, and Tennessee. 



IV.   Results (Preliminary)

• Cold season tornadoes in the southeast display a much broader range of 
temporal occurrence

• Cloud base height tends to be <800 meters

• QLCS cases had the highest observed cloud base height in the study

• QLCS cases had highest storm relative helicity

• Cloud cover tends to dominate southeast cold season tornado days hours in 
advance of tornado genesis
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Comparison of Cloud Base Height Among Three Sources

Difference between observed cloud 
base and estimate is 100 m. 
Possible reasons: 
• Decoupling between surface and 

sub-cloud boundary layer
• Negative gradient in mixing ratio
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Ceilometer Observed Cloud Base Height Comparison 
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Daytime/Nocturnal Ceilometer Observed Cloud Base Height by Storm Mode 
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Time Series of Ceilometer Observed Cloud Fraction

• Cases consist of 5 
QLCS’s and 1 supercell
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• Timescale is from 3 hours 
before tornado genesis to 
45 minutes after
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February 28, 2011 QLCS Tornado Genesis Case 

MPR observed liquid water content

Ceilometer observed cloud base height

Onset of rain 
results in rapid 
decline in fields…
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V. Conclusions

• Stratification of the low cloud deck often results due to strong advection

• Low clouds prevail for at least three hours prior to southeast cold tornadoes 
indicating common cloud-top mixed layers

• Day/night difference of SRH

• Importance of cloud climatology to NWP validation

VI. Future Work

• Continue adding additional ceilometer cases to improve statistics 

• Study mixed layer characteristics via radiosondes

• Compare radiosonde and ceilometer observations
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