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1. INTRODUCTION 

 
 Trochoidal tracks traced out by tornadoes revolving 
around parent mesocyclones (Fig. 1) have been docu-
mented by Fujita (1963), Agee et al. (1976; 1977), 
Brown and Knupp (1980), Bluestein (1983), Wakimoto 
and Atkins (1996), Wurman and Gill (2000), Wakimoto 
et al. (2003) among others.  Based on a dual-Doppler 
radar analysis, Ray et al. (1976) showed that location of 
the Harrah, Oklahoma tornado of 8 June 1974 with re-
spect to a parent circulation was consonant with the 
veering of the damage path to the right of storm motion.  
Tornado revolution about parent mesocyclone center is 
analogous to multiple vortices revolving about a parent 
tornado center (Fujita et al. 1970; Fujita 1981; Forbes 
and Bluestein 2001).  As documented by damage sur-
veys, photographs and mobile Doppler radar data, a 
loop was executed as the Moore, Oklahoma tornado of 
20 May 2013 revolved cyclonically around a supercell, 
low-level mesocyclone circulation once in the vicinity of 
the Moore Medical Center (Atkins et al. 2014; Burgess 
et al. 2014; Kurdzo et al. 2015).  Wakimoto et al. (2015, 
2016) surveyed the El Reno, Oklahoma tornado dam-
age path of 31 May 2013, revealing that the tornado 
with several embedded intense multiple-vortices moved 
rapidly in complex trochoidal/cycloidal/looping tracks 
while turning left slowly (Fig. 2). 
 Suction marks are the most interesting and useful 
of the marks left by tornadoes crossing open fields (Fu-
jita et al. 1970).  Fujita et al. originally developed a tro-
choidal hypothesis in which simple parametric equations 
of a trochoid were taken with an x-axis along the path of 
a tornado.  They computed varying ratios of a subvor-
tex’s circular motion to a parent tornado’s rectilinear 
motion to produce various shapes of a subvortex’s tro-
choidal marks, loop widths and shifts.  If the Fujita et al. 
technique were applied to tornado revolution around a 
parent mesocyclone axis, the utility of the technique was 
limited because the circular and rectilinear motions were 
assumed to be constant.  For example, the trochoid 
hypothesis did not account for a left- or right-turning or 
rectilinear parent tornado movements at various speeds, 
whereas the multiple vortices’ axes revolving about the 
parent tornado axis maintained constant circular mo-
tions.  The lack of such information motivated the author 
to extend the Fujita et al. technique by which the sub-
vortex’s revolution speed, the parent vortex’s transla-
tional velocity and direction toward which the parent 
vortex travels are considered as non-uniform. 
 The objective of the paper is to develop novel para-
metric equations for investigating and elucidating the 
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transient behaviors of tracks traced out by a hypothet-
ical subvortex revolving around a hypothetical parent 
vortex.  These equations express a set of quantities as 
explicit functions of independent variables.  The follow-
ing variables characterize different types of sub-vortex 
tracks: (a) translational speed of the parent vortex, (b) 
direction toward which the vortex travels in a rectilinear 
or curvilinear path, (c) beginning time at which a subvor-
tex track commences, (d) ending time of the track, (e) 
speed at which the subvortex is revolving cyclonically 
around the parent vortex axis, (f) radial distance of sub-
vortex axis from parent vortex axis, and (g) linear and 
nonlinear parent vortex path lengths and subvortex 
damage path lengths.  The evolutionary characteristics 
of several parameters were plotted against time to inter-
pret the transient behaviors of simulated tracks that bear 
resemblance to the observed tornado damage tracks. 
 
2. KINEMATICS OF A TROCHOIDAL MOTION 

 
 On a two-dimensional, horizontal plane, we consid-
er the positions of a parent vortex center at two different 
times 𝑡 and 𝑡 + ∆𝑡, where ∆𝑡 is a small increment time 

(Fig. 3).  The position relative to a given reference frame 
with origin 𝑂 is given by the position vector 𝐑𝑝𝑣 from the 

origin to point 𝑃𝑝𝑣.  The subscript 𝑝𝑣 represents parent 

vortex.  If the parent vortex center 𝑃𝑝𝑣 is in motion rela-

tive to the reference frame, the position vector 𝐑𝑝𝑣 is a 

function of time 𝑡, and can be expressed as 𝐑𝑝𝑣 =

𝐑𝑝𝑣(𝑡).  Considering an infinitesimal time increment 

(∆𝑡 → 0), the vector translational velocity 𝐂𝑝𝑣(𝑡) of the 

parent vortex axis at 𝑃𝑝𝑣(𝑡) relative to the reference 

frame at time 𝑡 is defined by 

 

lim
∆𝑡→0

𝐑𝑝𝑣(𝑡 + ∆𝑡) − 𝐑𝑝𝑣(𝑡)

∆𝑡
= lim

∆𝑡→0

∆𝐑𝑝𝑣

∆𝑡
=

𝑑𝐑𝑝𝑣(𝑡)

𝑑𝑡
= 𝐂𝑝𝑣(𝑡) , (1) 

 
where the vector 𝐑𝑝𝑣(𝑡 + ∆𝑡) − 𝐑𝑝𝑣(𝑡) = ∆𝐑𝑝𝑣 is the 

change in position of the parent vortex axis, or dis-
placement of 𝑃𝑝𝑣(𝑡 + ∆𝑡) during the infinitesimal interval 

of time ∆𝑡.  The parent vortex’s velocity 𝐶𝑝𝑣(𝑡) is the rate 

of change of the position of the parent vortex axis be-
tween points 𝑃(𝑡) and 𝑃(𝑡 + ∆𝑡).  The magnitude of the 

velocity vector 𝐂𝑝𝑣(𝑡) = 𝐶𝑝𝑣(𝑡) 𝐞𝐷𝑖𝑟𝑝𝑣
 is the parent vor-

tex’s translational speed 𝐶𝑝𝑣(𝑡) = |𝐂𝑝𝑣(𝑡)|; the vortex 

can accelerate, decelerate or maintain its constant 

speed with time.  The unit vector 𝐞𝐷𝑖𝑟𝑝𝑣
= sin[𝐷𝑖𝑟𝑝𝑣(𝑡)] 𝐢 

+ cos[𝐷𝑖𝑟𝑝𝑣(𝑡)] 𝐣 is tangent to the parent vortex’s transla-

tional direction 𝐷𝑖𝑟𝑝𝑣(𝑡) [= 𝜋

2
− 𝜃𝑝𝑣(𝑡)] toward which the 

vortex moves, and is measured clockwise from due 

north.  The term 𝜃𝑝𝑣(𝑡)[=
𝜋

2
− 𝐷𝑖𝑟𝑝𝑣(𝑡)] is the angle be-

tween the 𝐞𝐷𝑖𝑟𝑝𝑣
 vector and the x-axis is measured 

counterclockwise from due east (Fig. 3).  The point 
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𝑃𝑝𝑣(𝑡 + ∆𝑡) lies on the desired line if and only if 𝐑𝑝𝑣(𝑡 +

∆𝑡) − 𝐑𝑝𝑣(𝑡) is parallel to 𝐂𝑝𝑣(𝑡).  A new vector (red) is 

parallel to 𝐂𝑝𝑣(𝑡) if and only if it equals some scalar mul-

tiple of 𝐂𝑝𝑣(𝑡), so that the condition that 𝑃𝑝𝑣(𝑡 + ∆𝑡) be 

on the line is that 
 
      𝐑𝑝𝑣(𝑡 + ∆𝑡) − 𝐑𝑝𝑣(𝑡) = ∆𝐑𝑝𝑣 = ∆𝑡 𝐂𝑝𝑣(𝑡) ,    (2) 

 
for some time interval ∆𝑡 of duration.  Note that 𝐑𝑝𝑣(𝑡 +

∆𝑡) − 𝐑𝑝𝑣(𝑡) = ∆𝐑𝑝𝑣 is equivalent to ∆𝑡 𝐂𝑝𝑣(𝑡).  The 

parent vortex can move in a rectilinear line or turn left or 
right in a curvilinear path (blue dotted curve).  The posi-
tion and velocity of the parent vortex can be specified 
only relative to the reference frame. 
 A subvortex revolves at its angular velocity Ω𝑠𝑣(𝑡) 
cyclonically around the parent vortex axis.  Ω𝑠𝑣(𝑡) is the 

revolution angular velocity of the line (position vector) 
from the axis of the parent vortex 𝑃𝑝𝑣(𝑡) to the subvortex 

axis (Fig. 4) as a function of time.  The angular velocity 
may increase, maintain, or decrease its speed.  There-
fore, the position vector has a magnitude equal to the 
radial distance, and a direction determined by 𝐞𝑟 (Fig. 

4).  It is given by 
 
   𝐃𝑠𝑣(𝑡) = 𝐷𝑠𝑣(𝑡) 𝐞𝑟,           (3) 

 
where 𝐷𝑠𝑣(𝑡) is the radial distance from the parent vor-

tex axis to the subvortex tracing out the damage path at 
𝑡, and the subscript in 𝐷𝑠𝑣(𝑡) represents subvortex.  The 

unit vector  𝐞𝑟 = cos[Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡) ] 𝐢 +

sin[Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡) ] 𝐣 is directed away from 

𝑃𝑝𝑣(𝑡).  𝜃𝑠𝑣 is the angle of the subvortex’s initial position 

(𝑡 = 0) relative to the orientation of the parent vortex’s 

track, measured in a counterclockwise direction.  𝐷𝑠𝑣(𝑡) 

decreases, increases or remains unchanged with time, 
while at the same time, the subvortex revolves cycloni-
cally about the parent vortex axis. 
 A novel equation of a trochoidal track is written in 
vector form by adding 𝐃𝑠𝑣(𝑡) to Eq. (2) and replacing 

the subscript 𝑝𝑣 by 𝑡𝑟𝑜 in 𝐑𝑝𝑣.  It is given by 

 
 𝐑𝑡𝑟𝑜(𝑡 + ∆𝑡) = 𝐑𝑡𝑟𝑜(𝑡) + ∆𝑡 𝐂𝑝𝑣(𝑡) + 𝐃𝑠𝑣(𝑡), 

    𝑡𝑏 ≤ 𝑡 ≤ 𝑡𝑒 ,          (4) 

 
where 𝐑𝑡𝑟𝑜(𝑡 + ∆𝑡) represents the discrete position vec-

tor of the subvortex’s track at future time 𝑡 + ∆𝑡.  The 

subscript in 𝐑𝑡𝑟𝑜 represents the trochoid traced out by 

the subvortex axis [representing 𝐷𝑠𝑣(𝑡)] as it revolves 
about the axis of the translating parent vortex.  𝐑𝑡𝑟𝑜(𝑡) is 

the position vector of the trochoidal track at instant time 
𝑡 and is ground-relative.  𝑡𝑏 is the beginning time at 

which a damage track commences; 𝑡𝑒 is the ending time 

of the track.  The varying time 𝑡 = (𝑖 − 1)∆𝑡 is measured 

from 𝑡𝑏 to 𝑡𝑒, with the time interval ∆𝑡 and its index 

1 ≤ 𝑖 ≤ (
𝑡𝑒−𝑡𝑏

∆𝑡
) + 1. 

 Using a Lagrangian specification of the track field, 
Eq. (4) are written in scalar forms 
 
 𝑋𝑡𝑟𝑜(𝑡 + ∆𝑡) = 𝑋𝑡𝑟𝑜(𝑡) + ∆𝑡 𝐶𝑝𝑣(𝑡) sin[𝐷𝑖𝑟𝑝𝑣(𝑡)] 

  +𝐷𝑠𝑣(𝑡) cos[Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡)] , 

 𝑌𝑡𝑟𝑜(𝑡 + ∆𝑡) = 𝑌𝑡𝑟𝑜(𝑡) + ∆𝑡 𝐶𝑝𝑣(𝑡) cos[𝐷𝑖𝑟𝑝𝑣(𝑡)] 

  +𝐷𝑠𝑣(𝑡) sin[Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡)] ,        (5) 

 
where 𝑋𝑡𝑟𝑜 and 𝑌𝑡𝑟𝑜, respectively, are the eastward and 

northward Cartesian components of the position track 
vector 𝐑𝑡𝑟𝑜. 

 Differentiating Eq. (4) with respect to time t yields 
the vector trochoidal velocity 𝐂𝑡𝑟𝑜(𝑡) = 𝑈𝑡𝑟𝑜(𝑡) 𝐢 +
𝑉𝑡𝑟𝑜(𝑡) 𝐣, given as 

 

     𝐂𝑡𝑟𝑜(𝑡) =
𝑑𝐑𝑡𝑟𝑜(𝑡)

𝑑𝑡
= 𝐂𝑝𝑣(𝑡) + ∆𝑡

𝑑𝐂𝑝𝑣(𝑡)

𝑑𝑡
+ 𝐂𝑠𝑣(𝑡) ,    (6) 

 
where 𝑈𝑡𝑟𝑜(𝑡) and 𝑉𝑡𝑟𝑜(𝑡) are the positive Cartesian 

horizontal components of 𝐂𝑡𝑟𝑜(𝑡) directed eastward and 

northward, respectively.  Here, the magnitude of 
|𝐂𝑡𝑟𝑜(𝑡)| is the subvortex’s ground-relative, trochoidal 

speed, expressed by, 
 

  𝐶𝑡𝑟𝑜(𝑡) = |𝐂𝑡𝑟𝑜(𝑡)| = √𝑈𝑡𝑟𝑜
2 (𝑡) + 𝑉𝑡𝑟𝑜

2 (𝑡) ,     (7) 

 

and  
𝑑𝐂𝑝𝑣(𝑡)

𝑑𝑡
=

𝑑𝐶𝑝𝑣(𝑡)

𝑑𝑡
 𝐞𝐷𝑖𝑟𝑝𝑣

+ 𝐶𝑝𝑣(𝑡) 
𝑑𝐞𝐷𝑖𝑟𝑝𝑣

𝑑𝑡
           (8) 

 
is the change in velocity and translational direction of 
the parent vortex axis, respectively.  The second term 

 
𝑑𝐞𝐷𝑖𝑟𝑝𝑣

𝑑𝑡
 on the right-hand side of Eq. (8) is given by 

 

   
𝑑𝐞𝐷𝑖𝑟𝑝𝑣

𝑑𝑡
=

𝑑𝐷𝑖𝑟𝑝𝑣(𝑡) 

𝑑𝑡
{cos[𝐷𝑖𝑟𝑝𝑣(𝑡)] 𝐢 − sin[𝐷𝑖𝑟𝑝𝑣(𝑡)] 𝐣}.  (9) 

  

The unit vector 
𝑑𝐞𝐷𝑖𝑟𝑝𝑣

𝑑𝑡
 is perpendicular to 𝐞𝐷𝑖𝑟𝑝𝑣

 and 

points in the direction of increasing the parent vortex’s 
translational direction 𝐷𝑖𝑟𝑝𝑣(𝑡) (measured clockwise 

from due north).  The trochoidal direction toward which 
the subvortex moves along the trochoidal track is repre-

sented by 𝐷𝑖𝑟𝑡𝑟𝑜(𝑡) = tan−1[𝑈𝑡𝑟𝑜(𝑡) 𝑉𝑡𝑟𝑜(𝑡)⁄ ], and is 
measured clockwise from due north.  The scalar forms 
of Eq. (6) will be shown subsequently. 
 The last term on the right-hand side of Eq. (6) rep-
resents a subvortex’s velocity vector 𝐂𝑠𝑣(𝑡) on the cir-
cumference of the circle having its radius 𝐷𝑠𝑣(𝑡) and is 

given by, with the aid of Eq. (3), 
 

  𝐂𝑠𝑣(𝑡) =
𝑑𝐃𝑠𝑣(𝑡)

𝑑𝑡
= 𝐶𝑠𝑣_𝑟(𝑡) 𝐞𝑟 + 𝐶𝑠𝑣_𝑡(𝑡) 𝐞𝑡 .  (10) 

 
𝐂𝑠𝑣(𝑡) may be partitioned into (a) the radial component 

𝐶𝑠𝑣_𝑟(𝑡) 𝐞𝑟 that is the rate at which 𝐃𝑠𝑣(𝑡) stretches or 

shrinks with time in the 𝐞𝑟 direction (Fig. 4), and is given 

by 

   𝐶𝑠𝑣_𝑟(𝑡) =
𝑑𝐷𝑠𝑣(𝑡)

𝑑𝑡
 ,             (11) 

 
where 𝐶𝑠𝑣_𝑟(𝑡) is the radial velocity component, and (b) 

the tangential component 𝐶𝑠𝑣_𝑡(𝑡) 𝐞𝑡 that is the rate at 

which the subvortex axis revolves with time around the 
circumference of the circle having radius 𝐷𝑠𝑣(𝑡) in the 𝐞𝑡 

direction, and is expressed by 
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 𝐶𝑠𝑣_𝑡(𝑡) = [Ω𝑠𝑣(𝑡) + 𝑡
𝑑Ω𝑠𝑣(𝑡)  

𝑑𝑡
+

𝑑𝜃𝑝𝑣(𝑡)  

𝑑𝑡
] 𝐷𝑠𝑣(𝑡) , (12) 

 
where 𝐶𝑠𝑣_𝑡(𝑡) is the circumferential (or tangential) ve-

locity component.  The 𝑑𝜃𝑝𝑣(𝑡) 𝑑𝑡⁄  term represents the 

curvature of the parent vortex’s path from 𝑃𝑝𝑣(𝑡) to 

𝑃𝑝𝑣(𝑡 + ∆𝑡).  The curvature may be small comparing to 

Ω𝑠𝑣(𝑡).  If the vortex travels in a rectilinear motion with 

time 𝑡, 𝑑𝜃𝑝𝑣(𝑡) 𝑑𝑡⁄  equals zero.  The unit vector 𝐞𝑡 is 

perpendicular to 𝐞𝑟 and points in the direction of in-

creasing the angle [Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡)], given by 

𝐞𝑡 = − sin[Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡)] 𝐢 + cos[Ω𝑠𝑣(𝑡) × 𝑡 +

𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡)] 𝐣.  Note that the unit vectors  𝐞𝑟 and 𝐞𝑡 are 

related to the Cartesian unit vectors 𝐢 and 𝐣.  This ex-

presses the subvortex axis’s revolution speed magni-
tude |𝐂𝑠𝑣(𝑡)| as the sum of a radial component, directed 

away from or towards the parent vortex axis with magni-
tude 𝐶𝑠𝑣_𝑟(𝑡), and a tangential component with magni-

tude 𝐶𝑠𝑣_𝑡(𝑡).  Note that |𝐂𝑠𝑣(𝑡)| may be expressed as 

 

  𝐶𝑠𝑣(𝑡) = |𝐂𝑠𝑣(𝑡)| = √𝐶𝑠𝑣_𝑟
2 (𝑡) + 𝐶𝑠𝑣_𝑡

2 (𝑡) .   (13) 

 
If 𝐷𝑠𝑣(𝑡) is constant with time,  𝐶𝑠𝑣_𝑡(𝑡) in Eq. (11) is ze-

ro, indicating that the subvortex axis is rotating in a cir-
cular motion at its constant revolution speed 𝐶𝑠𝑣_𝑡(𝑡) 

without stretching or shrinking 𝐷𝑠𝑣(𝑡) in the 𝐞𝑟 direction.  

When 𝐶𝑠𝑣_𝑡(𝑡) is zero, the subvortex is located at the 

center of the parent vortex, because 𝐷𝑠𝑣(𝑡) is zero in 

Eq. (12). 
 Fujita et al. (1970, their Fig. 84) and Wakimoto et al. 
(2003) created an idealized illustration of basic tro-
choidal marks as a function of (a) the revolution speed 
|𝐂𝑠𝑣(𝑡)| of a hypothetical subvortex axis around a parent 

vortex axis and (b) the translational speed |𝐂𝑝𝑣(𝑡)| of 

the parent vortex center (Fig. 1).  If one thinks of the 
subvortex path as being traced out by flow around the 
translational parent vortex, then 𝑑𝑌𝑡𝑟𝑜(𝑡) 𝑑𝑡⁄  and 

𝑑𝑋𝑡𝑟𝑜(𝑡) 𝑑𝑡⁄  are, respectively, the northward and east-

ward trochoidal velocity components, as viewed from 
top, and are given by 
 

        
𝑑𝑌𝑡𝑟𝑜(𝑡)

𝑑𝑋𝑡𝑟𝑜(𝑡)
=

𝑑𝑌𝑡𝑟𝑜(𝑡)/𝑑𝑡

𝑑𝑋𝑡𝑟𝑜(𝑡)/𝑑𝑡
=

𝑉𝑡𝑟𝑜(𝑡)

𝑈𝑡𝑟𝑜(𝑡)
  ,         (14) 

 
where the scalar forms of Eq. (6) are given by 
 

  𝑈𝑡𝑟𝑜(𝑡) =
𝑑𝑋𝑡𝑟𝑜(𝑡)

𝑑𝑡
= [𝐶𝑝𝑣(𝑡) + ∆𝑡

𝑑𝐶𝑝𝑣(𝑡)

𝑑𝑡
] sin[𝐷𝑖𝑟𝑝𝑣(𝑡)] 

 +∆𝑡
𝑑𝐷𝑖𝑟𝑝𝑣(𝑡)

𝑑𝑡
𝐶𝑝𝑣(𝑡) cos[𝐷𝑖𝑟𝑝𝑣(𝑡)] 

 +𝐶𝑠𝑣_𝑟(𝑡) cos[Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡)] 

 −𝐶𝑠𝑣_𝑡(𝑡) sin[Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡)] ,       (15a) 

  𝑉𝑡𝑟𝑜(𝑡) =
𝑑𝑌𝑡𝑟𝑜(𝑡)

𝑑𝑡
= [𝐶𝑝𝑣(𝑡) + ∆𝑡

𝑑𝐶𝑝𝑣(𝑡)

𝑑𝑡
] cos[𝐷𝑖𝑟𝑝𝑣(𝑡)] 

 −∆𝑡
𝑑𝐷𝑖𝑟𝑝𝑣(𝑡)

𝑑𝑡
𝐶𝑝𝑣(𝑡) sin[𝐷𝑖𝑟𝑝𝑣(𝑡)] 

 +𝐶𝑠𝑣_𝑟(𝑡) sin[Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡)] 

 +𝐶𝑠𝑣_𝑡(𝑡) cos[Ω𝑠𝑣(𝑡) × 𝑡 + 𝜃𝑠𝑣 + 𝜃𝑝𝑣(𝑡)] .       (15b) 

 
Eq. (14) enables one to find the slope 𝑑𝑌𝑡𝑟𝑜(𝑡)/𝑑𝑋𝑡𝑟𝑜(𝑡) 

of the tangent to a parametric curve.  It can been seen 

from the equation that the curve has a horizontal tan-
gent (eastward) when 𝑑𝑌𝑡𝑟𝑜(𝑡)/𝑑𝑡 = 0, provided that 

𝑑𝑋𝑡𝑟𝑜(𝑡)/𝑑𝑡 ≠ 0.  Furthemore, the curve has a vertical 

tangent (northward) when  𝑑𝑋𝑡𝑟𝑜(𝑡)/𝑑𝑡 = 0, provided 

that 𝑑𝑌𝑡𝑟𝑜(𝑡)/𝑑𝑡 ≠ 0.   

 For the sake of simplicity, we consider the path of a 
parent vortex center to be along the x-axis when we 
assume that 𝐷𝑖𝑟𝑝𝑣(𝑡), 𝜃𝑝𝑣(𝑡), and 𝐷𝑠𝑣(𝑡) are constant 

with time so that Eq. (14), via the aid of Eq. (15), is sim-
plified to 

              
𝑉𝑡𝑟𝑜(𝑡)

𝑈𝑡𝑟𝑜(𝑡)
=

𝑅 cos[Ω𝑠𝑣(𝑡)×𝑡+𝜃𝑠𝑣]

1−𝑅 sin[Ω𝑠𝑣(𝑡)×𝑡+𝜃𝑠𝑣]
  ,         (16) 

 
where 𝑅[≡ 𝐶𝑠𝑣_𝑡(𝑡)/𝐶𝑝𝑣(𝑡)] is the ratio of the subvortex’s 

revolution speed 𝐶𝑠𝑣_𝑡(𝑡) [= Ω𝑠𝑣(𝑡)𝐷𝑠𝑣(𝑡)] to the parent 

vortex’s translational speed 𝐶𝑝𝑣(𝑡), 𝐶𝑠𝑣_𝑟(𝑡) = 0,  

𝐷𝑖𝑟𝑝𝑣(𝑡) = 90º, and  𝜃𝑝𝑣(𝑡) = 0º.  When 𝑅 = 1, the tro-

choidal mark is cycloidal, representing a sharply-peaked 
track similar to the pointed trochoid that is produced 
when 𝐶𝑠𝑣_𝜏(𝑡) is equal to 𝐶𝑝𝑣(𝑡).  When 𝑅 > 1, a loop 

results.  A broadly-peaked track is produced when 𝑅 <
1.  Note that Eq. (16) is analogous to Eq. (10) of Fujita 

et al. (1970). 
 From elementary calculus, if a curve is described 
by the parametric equations 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), where 

𝑑𝑓 𝑑𝑡⁄  and 𝑑𝑔 𝑑𝑡⁄  are continuous on [𝛼, 𝛽] and the curve 

is traversed exactly once as 𝑡 increases from 𝛼 to 𝛽, 

then the arc length of the curve is given by 
 

  𝐿 = ∫ √(
𝑑𝑥

𝑑𝜏
)

2
+ (

𝑑𝑦

𝑑𝜏
)

2
𝑑𝜏

𝛽

𝛼
 ,  𝛼 ≤ 𝑡 ≤ 𝛽 ,       (17) 

 
where 𝜏 is a dummy variable for the integration.  Replac-

ing 𝑥 by 𝑋𝑡𝑟𝑜 and 𝑦 by 𝑌𝑡𝑟𝑜 and then substituting 𝑈𝑡𝑟𝑜 

into 𝑑𝑋𝑡𝑟𝑜/𝑑𝑡 and 𝑉𝑡𝑟𝑜 into 𝑑𝑌𝑡𝑟𝑜/𝑑𝑡 in Eq. (17) yields a 

subvortex’s damage path length 𝑃𝐿𝑡𝑟𝑜, 

 

𝑃𝐿𝑡𝑟𝑜 = ∫ √𝑈𝑡𝑟𝑜
2 (𝜏) + 𝑉𝑡𝑟𝑜

2 (𝜏) 𝑑𝜏
𝑡𝑒

𝑡𝑏
= ∫ 𝐶𝑡𝑟𝑜(𝜏) 𝑑𝜏

𝑡𝑒

𝑡𝑏
 .  (18) 

 
Furthermore, the path length (𝑃𝐿𝑝𝑣) of a parent vortex 

can be obtained in an analogous manner to the devel-
opment of Eq. (18), given by 
 

   𝑃𝐿𝑝𝑣 = ∫ 𝐶𝑝𝑣(𝜏) 𝑑𝜏
𝑡𝑒

𝑡𝑏
  .                  (19) 

 
Eq. (19) is valid for varying 𝐶𝑝𝑣(𝑡).  If 𝐶𝑝𝑣(𝑡) is constant 

with time, then the equation is simplified to 𝑃𝐿𝑝𝑣 =

𝐶𝑝𝑣(𝑡𝑒 − 𝑡𝑏), regardless of a rectilinear or curvilinear 

path. 
 Following the approach of Fujita et al. (1970) and 
Agee et al. (1976), the time difference (∆𝜏) between two 

successive points of zero or vertical slope of a tro-
choidal curve may be expressed by 
 

   ∆𝜏 = 𝜏2 − 𝜏1 =
2𝜋

Ω𝑠𝑣
  ,          (20) 

 
where 𝜏1 and 𝜏2, respectively, are the times of the first 

and second points; and Ω𝑠𝑣 is assumed to be constant 
between the two points. 
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3. SIMULATION RESULTS 

 
 This section uses Eqs. (3)-(20) to provide what 
each input parameter may be able to deduce about the 
transient behaviors of trochoidal marks traced out by a 
hypothetical subvortex revolving around a hypothetical 
parent vortex.  Table 1 lists the selected input parameter 
values for simulating a model tornado axis revolving 
cyclonically around a model mesocyclone axis in six 
experiments.  The tornado axis is assumed to be verti-
cal, although mobile, phased-array, Doppler radar ob-
servations of tilted tornadic vortex signatures with height 
were documented by French et al. (2014).  To represent 
some of the variety found in nature, we assume the 
mesocyclone having a maximum tangential velocity of 
25 m s

-1
 at a radius of 2.5 km.  To simulate the tornado 

axis revolving cyclonically around the mesocyclone axis, 
𝐷𝑠𝑣(𝑡) is assumed to be 1.5 km, and the angular velocity 

𝛺𝑠𝑣(𝑡) is assumed to be 0.01 s
-1

 for all times.  Thus, 

𝐶𝑠𝑣_𝑡(𝑡) is 15 m s
-1

, which is the tangential component of 

speed of the tornado axis on the circumference of the 
circle (e.g., Fig. 4) having a radius 𝐷𝑠𝑣(𝑡).  The duration 

of the mesocyclone is 30 min. 
 
3.1 Experiment A 
 
 Figure 5 presents an idealized illustration of basic 
trochoidal mark as a function of 𝑅[≡ 𝐶𝑠𝑣_𝑡(𝑡)/𝐶𝑝𝑣(𝑡)].  

We consider the problem of a mesocyclone moving 
eastward [𝐷𝑖𝑟𝑝𝑣(𝑡) = 90º] with a constant 𝐶𝑝𝑣(𝑡) of 25 m 

s
-1

 in a rectilinear motion.  A tornado revolved cycloni-
cally at a constant 𝐶𝑠𝑣_𝑡(𝑡) value of 15 m s

-1
 around the 

mesocyclone center.  This value was calculated from 
Eq. (12).  At 𝑡𝑏 = 0 min, a damage track commenced at 

𝑥 = 0.0 km and 𝑦 = -1.5 km; the track at 𝑥 = 43.8 km 

and 𝑦 = -1.0 km ended at 𝑡𝑒 = 30 min. Table 1 lists the 

selected parameters for experiment A. 
 As shown in the upper-right corner of Fig. 5b, a 
small time increment (∆𝑡) of 10 s is used to illustrate a 

distance between two red dots.  Two blue dots along the 
red dotted curve represent the 1-min update of the 
Phased Array Radar (PAR).  At the same time, two black 
dots along the curve refer to a 5-min update of the 
Weather Surveillance Radar-1988 (WSR-88D).  The 
PAR’s lowest elevation angle of 0.5º was revisited every 
1 min or less (Heinselman et al. 2008).  High temporal 
resolution volumetric radar data are a necessity for rapid 
identification and confirmation of weather phenomena 
including tornadic vortex signatures within parent meso-
cyclone vortex signatures (Brown et al. 1978) that can 
develop within minutes. 
 The red dotted curve represents a trochoidal track 
traced out by the tornado axis on a radius (representing 
𝐷𝑠𝑣, green line) of a gray, interior circle inside a gray, 

exterior circle (representing a propagating mesocyclone) 
as the interior circle rolls.  The salient feature of Figs. 5a 
and 5b is the trochoidal mark with broadly-peaked 
ridges associated with greater curvature and flatter 
troughs associated with lesser curvature.  This is owing 
to the fact that the parent mesocyclone’s translational 

speed 𝐶𝑝𝑣(𝑡) is greater than the tornado’s revolution 

speed 𝐶𝑠𝑣_𝑡(𝑡), thus yielding 𝑅 < 1.0 = 𝑅𝑐𝑦𝑐 (indicated by 

gray horizontal dashed line in Fig. 5c).  Note that a blue 
circled line representing 𝑅 < 1.0 is shown below the 𝑅𝑐𝑦𝑐 

line. 
 The evolutionary characteristics of the tornado’s 
trochoidal speed 𝐶𝑡𝑟𝑜(𝑡) and trochoidal direction 
𝐷𝑖𝑟𝑡𝑟𝑜(𝑡), tornado revolution direction 𝐷𝑖𝑟𝑠𝑣(𝑡), and 

damage path length 𝑃𝐿𝑡𝑟𝑜 as well as the mesocyclone’s 

translational speed 𝐶𝑝𝑣(𝑡), translational direction 

𝐷𝑖𝑟𝑝𝑣(𝑡), and path length 𝑃𝐿𝑝𝑣 are illustrated in Fig. 5c.  

The green 𝐷𝑖𝑟𝑠𝑣(𝑡) line centered at the interior circle is 

rotating cyclonically as the mesocyclone is propagating 
eastward.  To the left (right) of the mesocyclone rectilin-
ear track, the closer (farther apart) two red dots, the 
slower (faster) the trochoidal speeds 𝐶𝑡𝑟𝑜(𝑡), as indicat-

ed by the green, converging (diverging) 𝐷𝑠𝑣(𝑡) lines, 

(Figs. 5a and 5b).  A black dashed line representing 
𝐶𝑝𝑣(𝑡) passes through a red, wavy curve represented by 

𝐶𝑡𝑟𝑜(𝑡).  Between 𝑡 = 3 min and 𝑡 = 7.5 min, 𝐶𝑡𝑟𝑜(𝑡) ≤
𝐶𝑝𝑣(𝑡), suggestive of the fact that the tornado’s curvilin-

ear motion is slower than the mesocyclone’s rectilinear 
motion.   Also, 𝐶𝑡𝑟𝑜(𝑡) ≥ 𝐶𝑝𝑣(𝑡) occurs between 𝑡 = 7.5 

min and 𝑡 = 13.5 min, indicating that the tornado’s cen-

ter in its curvilinear path moves faster than the rectiline-
ar motion of the mesocyclone.  The interpretation of the 
𝐶𝑡𝑟𝑜(𝑡) curve shown in Fig. 5c is straightforward, be-

cause Fig. 1 does not tell us how the tornado’s tro-
choidal speed 𝐶𝑡𝑟𝑜(𝑡) along the trochoidal mark varies 

with time.  Note that the profile of 𝐷𝑖𝑟𝑡𝑟𝑜(𝑡) is nonlinear. 

 The tornado’s damage path length (𝑃𝐿𝑡𝑟𝑜), as cal-

culated from Eq. (18), is 48 km, which is slightly longer 
than the mesocyclone’s path length (𝑃𝐿𝑝𝑣) of 45 km 

computed from Eq. (19).  From Eq. (20), ∆𝜏 is found to 

be 628 s (~10.5 min), which favorably concur with the 
time difference between the first and second broadly-
peak ridges as well as between the first and second 
flatter troughs. 
 
3.2 Experiment B 
 
 In Experiment A, we demonstrated that the ratio of 
𝐶𝑠𝑣_𝑡(𝑡) 𝐶𝑝𝑣(𝑡)⁄ < 1.0 can affect the transient behaviors 

of simulated trochoidal tracks.  Now, we conduct an-
other experiment (Exp B) using 𝑅 = 1.0.  In Table 1 and 

Fig. 6, we decrease 𝐶𝑝𝑣(𝑡) to 15 m s
-1

 to match 𝐶𝑠𝑣_𝑡(𝑡), 

while other parameters remain unchanged.  The simu-
lated damage track of the model tornado shows a tro-
choidal mark that has approached a cycloid with a zero-
angle cusp (vertical slope) for a crest (Figs. 6a and 6b).  
Three significant track shifts occurred at three cycloids, 
wherein the mark with the cusp-shaped crests was pro-
duced when 𝑅 = 1.0 = 𝑅𝑐𝑦𝑐, as shown by the blue cir-

cled line overlaid on the gray dashed line in Fig. 6c.  
This figure provides the evolutionary characteristics of 
the tornado’s trochoidal motion.  The prominent feature 
of Fig. 6 is that the minimum value of 𝐶𝑡𝑟𝑜(𝑡) locally was 

zero (maximum value) to the left (right) of the mesocy-
clone track.  This is indicative of the fact that the tornado 
situated to the left of the mesocyclone path was station-
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ary possibly for a long duration.  The tornado began its 
speedup as it revolved behind the mesocyclone center.  
To the right of the mesocyclone track, the tornado rapid-
ly approached until it reached its maximum at 30 m s

-1
.  

The tornado then started its slowdown as it continued to 
revolve in front of the mesocyclone center.  The second 
prominent feature is that the tornado’s 𝐷𝑖𝑟𝑡𝑟𝑜(𝑡) no 

longer changed nonlinearly, like it did in Fig. 5, as the 
tornado revolved around the mesocyclone center.  As 
the tornado progressively approached from northeast 
toward north, it slowed down to zero.  Then, the tornado 
abruptly changed its direction from north to south, be-
fore resuming a more normal eastward motion. 
 The third prominent feature is that the tornado’s 
damage path length (𝑃𝐿𝑡𝑟𝑜) was much longer than the 

mesocyclone’s path length (𝑃𝐿𝑝𝑣) when the meso-

cyclone’s decreased 𝐶𝑝𝑣(𝑡) was equal to the tornado’s 

constant 𝐶𝑠𝑣_𝑡(𝑡) than when 𝐶𝑝𝑣(𝑡) was greater than 

𝐶𝑠𝑣_𝑡(𝑡) as in Fig. 5.  At the end of 30 min, both 𝑃𝐿𝑡𝑟𝑜 

and 𝑃𝐿𝑝𝑣 in association with 𝑅 = 1.0 were shorter than 

those in association with 𝑅 < 1.0, as comparison be-

tween Fig. 5c and Fig. 6c illustrates.  Furthermore, the 
distance between two successive crested ridges or flat-
ter troughs decreased with increasing 𝑅, while at the 

same time, ∆𝜏 was again found to be 10.5 min.  It is 

indicative that ∆𝜏 is independent of 𝑅, as shown by Eq. 
(20). 
 
3.3 Experiment C 
 
 What would happen to the tornado’s trochoidal 
speed 𝐶𝑡𝑟𝑜(𝑡) and direction 𝐷𝑖𝑟𝑡𝑟𝑜(𝑡) when 𝐶𝑝𝑣(𝑡) is fur-

ther decreased to less than 𝐶𝑠𝑣_𝑡(𝑡), while other parame-

ters remain constant (Table 1)?  The evolutionary char-
acteristics of several parameters plotted against time to 
interpret the transient behaviors of simulated tracks are 
presented in Fig. 7. 
 Since 𝑅 > 1.0, three prominent loops were pro-

duced during a 30-min mesocyclone track (Fig. 7b).  
This was because the tornado revolution around the 
mesocyclone center was faster than the slow-
propagating mesocyclone, as expected.  The tornado’s 
damage path length (𝑃𝐿𝑡𝑟𝑜) was 27 km, which was 

much longer than that of the mesocyclone (𝑃𝐿𝑝𝑣 = 9 

km), as indicated by green and gray solid curves in Fig. 
7c, respectively.  Each loop’s area increased with in-
creasing 𝑅. 

 The tornado’s track speed, denoted by the red 
curve 𝐶𝑡𝑟𝑜(𝑡) in Fig. 7c, varied slightly along the red 

dotted loop (Fig. 7b).  𝐶𝑡𝑟𝑜(𝑡) sped up and slowed down; 

𝐷𝑖𝑟𝑡𝑟𝑜(𝑡) varied nonlinearly as the tornado rotated cy-

clonically and periodically around the mesocyclone cen-
ter.  The difference between the minimum and maximum 
values of 𝐶𝑡𝑟𝑜(𝑡) is 10 m s

-1
.  At the same time, the tor-

nado’s translational direction 𝐷𝑖𝑟𝑠𝑣(𝑡) changed linearly 

(orange curve). 
 
3.4 Experiment D 

 In the last few subsections, we discussed the ef-
fects of the 𝐶𝑠𝑣_𝜏(𝑡)-to-𝐶𝑝𝑣(𝑡) ratios on the transient be-

haviors of simulated tracks.  We now investigate the 

effects of linear increase in 𝐶𝑝𝑣(𝑡) on the behaviors of 

the tracks, while other parameters remain fixed.  To 
simulate a varying parent mesocyclone speed,  𝐶𝑝𝑣(𝑡) 

may be analytically expressed as  
  

    𝐶𝑝𝑣(𝑡) = 𝐶𝑝𝑣(𝑡𝑏) + [𝐶𝑝𝑣(𝑡𝑒) − 𝐶𝑝𝑣(𝑡𝑏)] (
𝑡−𝑡𝑏

𝑡𝑒−𝑡𝑏
)  ,  (21a) 

 
𝑑𝐶𝑝𝑣(𝑡)

𝑑𝑡
=

𝐶𝑝𝑣(𝑡𝑒)−𝐶𝑝𝑣(𝑡𝑏)

𝑡𝑒−𝑡𝑏
  ,          (21b) 

 
where 𝐶𝑝𝑣(𝑡𝑏) is assumed to be 1 m s

-1
 at 𝑡𝑏 = 0 and 

𝐶𝑝𝑣(𝑡𝑒) is assumed to be 40 m s
-1

 at 𝑡𝑒 = 30 min (Table 

1).  This represents a linear, rapid increase in the meso-
cyclone’s vortex movement speed.  Eq. (21b) is a con-
stant acceleration that the mesocyclone experiences in 
a rectilinear motion. 
 Figure 8 presents the effects of varying mesocy-
clone’s translational speed on the tornado’s trochoidal 
speed and direction.  Between 0 and 11 min, a “tilted” 
loop was produced with decreasing 𝑅 > 1.0 = 𝑅𝑐𝑦𝑐.  

Note that this tilted loop is not shown in Fig. 1, because 
𝐶𝑝𝑣(𝑡) is constant in the figure.  Comparing to the up-

right loop (red, vertical line passing through the center of 
the first loop in Fig. 7a), the loop was tilted backward 
owing to the increased-propagating mesocyclone.  As 
𝐶𝑝𝑣(𝑡) increased linearly, the trochoidal marks trans-

formed from once-executed loop to broadly-peaked 
ridges and flatter troughs.  The 𝐶𝑡𝑟𝑜(𝑡) curve was ampli-
fied, corresponding to the linear increase of 𝐶𝑝𝑣(𝑡).  The 

“tilted” loops have been observed in Fig. 83 of Fujita et 
al. (1970) and Fig. 21 of Agee et al. (1977).  The second 
slightly tilted loop associated with the El Reno, Oklaho-
ma tornado near 2325 UTC is shown in Fig. 2. 
 
3.5 Experiment E 

 
 Previously, the linear increase in 𝐶𝑝𝑣(𝑡) changed 

the 𝐶𝑠𝑣_𝜏(𝑡)-to-𝐶𝑝𝑣(𝑡) ratios which, in turn, impacted the 

transient behaviors of simulated tracks including the 
backward tilted loop.  Now, we reverse Experiment D by 
stating that in Eq. (21), 𝐶𝑝𝑣(𝑡𝑏) is now 40 m s

-1
 at 𝑡𝑏 = 0 

min and 𝐶𝑝𝑣(𝑡𝑒) is now 1 m s
-1

 at 𝑡𝑒 = 30 min (Table 1).  

This reverse represents a linear, rapid decrease in the 
translational speed of the mesocyclone. 
 Figure 9 is very similar to Fig. 8, except that the 
former figure was a mirror image of the latter figure.  
This image was a reflected duplication of evolutionary 
characteristics that appeared almost identical but were 
reversed. 
 
3.6 Experiment F 
 
 In the last five experiments, we demonstrated how 
the effects of varying 𝐶𝑝𝑣(𝑡) impact the evolutionary 

characteristics of the tornado’s trochoidal motion, while 
other parameters remained unchanged including the 
constant Ω𝑠𝑣(𝑡), as shown in Table 1. Now, we begin to 

explore the role of varying Ω𝑠𝑣(𝑡) in influencing the 

complex trochoidal/cycloidal/looping tracks.  Analogous 
to the development of Eq. (21), Ω𝑠𝑣(𝑡) may be analyti-

cally given by 



6 
 

 

    Ω𝑠𝑣(𝑡) = Ω𝑠𝑣(𝑡𝑏) + [Ω𝑠𝑣(𝑡𝑒) − Ω𝑠𝑣(𝑡𝑏)] (
𝑡−𝑡𝑏

𝑡𝑒−𝑡𝑏
)  ,  (22a) 

 
𝑑Ω𝑠𝑣(𝑡)

𝑑𝑡
=

Ω𝑠𝑣(𝑡𝑒)−Ω𝑠𝑣(𝑡𝑏)

𝑡𝑒−𝑡𝑏
  ,          (22b) 

 
where Ω𝑠𝑣(𝑡𝑏) is assumed to be 3.33×10

-3
 s

-1
 at 𝑡𝑏 = 0 

min and Ω𝑠𝑣(𝑡𝑒) is assumed to be 2.0×10
-2

 s
-1

 at 𝑡𝑒 = 30 
min.  Eq. (22) shows the linear increase of C𝑠𝑣(𝑡) from 5 

to 55 m s
-1

.  Other parameters, including the constant 
𝐶𝑝𝑣(𝑡) value of 25 m s

-1
, remain unchanged (Table 1). 

 As 𝑅 increases linearly and progressively in Fig. 10, 
the trochoidal marks transform from the broadly-peaked 
track, through a cycloidal track with a zero-angle cusp, 
to a few loops.  While a propagating mesocyclone trav-
eled eastward at a constant 𝐶𝑝𝑣(𝑡), the tornado center 

rapidly and cyclonically revolved around the mesocy-
clone center at the progressively increased revolution 
speeds 𝐶𝑠𝑣(𝑡) of the tornado.  The varying 𝐶𝑠𝑣(𝑡) caused 

to (a) change trochoidal marks and motions, (b) in-
crease the distance between two successive red dots 
along the red dotted path, (c) decrease the distance 
between the two consecutive points of zero slope, and 
(c) increase the loop size.  The highly nonlinear 𝐶𝑡𝑟𝑜(𝑡) 

curve amplifies increasingly, corresponding to the linear 
increased Ω𝑠𝑣(𝑡) and 𝐶𝑠𝑣(𝑡).  
 
 4. CONCLUSIONS AND FUTURE WORK 

 
 A model of subvortex trochoidal motion in which 
parametric equations were developed to investigate and 
interpret the transient behaviors of simulated trochoidal 
tracks traced out by a hypothetical subvortex (tornado) 
revolving around a hypothetical parent vortex (mesocy-
clone) was presented.  The evolutionary characteristics 
of several parameters were produced by plotting time 
series to elucidate such behaviors that bear resem-
blance to the observed tornado damage tracks during 
tornado revolution around a parent mesocyclone (e.g., 
Fig. 2).  The trochoidal motion of the subvortex depends 
heavily upon (a) the rectilinear/curvilinear motion of the 
parent vortex, (b) the radial distance from the parent 
vortex axis to the subvortex axis, (c) the angular velocity 
at which the subvortex revolves around the parent vor-
tex, and (d) the ratio of the subvortex’s revolution speed 
to the parent vortex’s translational speed.  Although 
trochoidal marks are the most interesting and useful of 
the marks left by tornadoes crossing open fields and 
towns (Fig. 2), we believe that the model developed in 
this study highlights the gap in our current understand-
ing and interpretation of the relationship between the 
trochoidal motion simulations and the observed tornado 
damage tracks. 
 In our on-going work, we plan to demonstrate that a 
model multiple-vortex tornado revolving around a model 
parent mesocyclone will produce trochoidal marks 
traced out by the model multiple-vortex axes rotating 
cyclonically around the model parent tornado axis.  In 
the near future, we plan to map out near-surface tornad-
ic wind fields produced by an analytical or numerical 
tornado revolving around an analytical or numerical par-
ent mesocyclone in an attempt to determine the duration 

of ground-relative wind speeds along a rectiline-
ar/curvilinear tornado damage track.  The duration pat-
terns may be used to assess and interpret the EF dam-
age intensity isopleths. 
 The parent mesocyclone motion [i.e., 𝐶𝑝𝑣(𝑡) and 

𝐷𝑖𝑟𝑝𝑣(𝑡)] and path length (i.e., 𝑃𝐿𝑝𝑣), the tornado’s radial 

distance [i.e., 𝐷𝑠𝑣(𝑡)] from the mesocyclone axis, and 

the tornado’s angular velocity [i.e., Ω𝑠𝑣(𝑡)] are the most 
important parameters that can be estimated from suc-
cessive volume scans of Doppler radar data at lowest 
elevation angles.  The estimated parameters enable the 
tornado’s trochoidal motion and damage path length to 
be computed. 
 In our near-future works, the trochoidal motion 
model will be applied to our phased-array radar simula-
tion studies.  The simulation will produce single-Doppler 
data by scanning across a model tornado that revolves 
cyclonically around a model parent mesocyclonic circu-
lation at proximity to the radar site.  Zrnić and Istok 
(1980) provided single-Doppler data suggesting that the 
Del City, Oklahoma tornado of 20 May 1977 was revolv-
ing cyclonically about a parent mesocyclonic circulation 
located at 35-40 km from the National Severe Storms 
Laboratory (NSSL) Doppler radar.  As stated by 
Wakimoto et al. (2003), no visual information on the 
funnel or detailed damage survey was provided to con-
firm this trochoidal motion. 
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TABLE 1.  Initial parameters that generate trochoidal tracks traced out by a model tornado axis revolving around a 
model parent mesocyclone axis as a function of time (𝑡) up to 30 min are presented for six experiments (EXP) A-F.  

An arrow (→) located between two values represents a transient change from one value at 𝑡 = 𝑡𝑜 to another value at 

𝑡 = 𝑡𝑜 + ∆𝑡, where ∆𝑡 = 10 s.  Units are: 𝐶𝑝𝑣(𝑡) in m s
-1

; 𝐷𝑖𝑟𝑝𝑣(𝑡) in deg; 𝜃𝑝𝑣(𝑡) in deg; 𝐷𝑠𝑣(𝑡) in km; 𝛺𝑠𝑣(𝑡) in s
-1

; 

𝐶𝑠𝑣_𝑡(𝑡) in m s
-1

; and 𝜃𝑠𝑣 in deg. 

Mesocyclone Tornado 

EXP 𝐶𝑝𝑣(𝑡)
 

𝐷𝑖𝑟𝑝𝑣(𝑡) 𝜃𝑝𝑣(𝑡) 𝐷𝑠𝑣(𝑡) 𝛺𝑠𝑣(𝑡) 𝐶𝑠𝑣_𝜏(𝑡) 𝜃𝑠𝑣 

A 25 90º 0º 1.5 10
-2 

15 270º 

B 15 90º 0º 1.5 10
-2 15 270º 

C 5 90º 0º 1.5 10
-2 15 270º 

D 1→40 90º 0º 1.5 10
-2 15 270º 

E 40→1 90º 0º 1.5 10
-2 15 315º 

F 25 90º 0º 1.5 0.0033→0.02 5→55 0º 

 

 

 

 

 

FIG. 1.  Idealized illustration of (a) basic trochoidal marks (black curves) as a function of a hypothetical tornado cen-

ter’s rotational speed around a hypothetical mesocyclone center (gray arrows) and the motion of the mesocyclone 

and (b) a tornado track (gray shaded curve) if the ratio of the tornado’s rotational speed to the mesocyclone’s vortex 

movement speed is equal to one.  [Figure from Wakimoto et al. (2003)]. 
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FIG. 2.  Damage map of the El Reno, OK tornado of 31 May 2013.  Black, blue, green, and red contours, respective-
ly, denote the EF0, -1, -2, and -3 damage intensity isopleths.  The tornado’s path, including loops and cusps, is indi-
cated by a black, dotted curve; Black, thick circles denote the time (UTC) of the radar-indicated location of the torna-
do.  Two red, dotted curves denote the location of an anticyclonic tornado and cyclonic suction vortex.  Magenta ar-
rows represent the approximate flow depicted in the damage based on fallen trees, building debris, and streaks in the 
vegetation based on a detailed aerial survey.  Red stars denote two deployment locations and times of the RaXPol 
mobile Doppler radar (shown by an icon of the truck).  Photographs and high-definition video of the tornado were 
taken at both sides.  [Figure from Wakimoto et al. (2015, 2016)]. 
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FIG. 3.  Positions of a parent vortex axis 𝑃𝑝𝑣 at two different times 𝑡 and 𝑡 + ∆𝑡, relative to a given reference frame 

with origin O, are given by the parent vortex position vectors 𝑹𝑝𝑣(𝑡) and 𝑹𝑝𝑣(𝑡 + ∆𝑡) (green arrows) from point O to 

points 𝑃𝑝𝑣(𝑡) and 𝑃𝑝𝑣(𝑡 + ∆𝑡) (heavy black dots).  The initial translational direction 𝜃𝑝𝑣(𝑡) at 𝑡 = 0 between the parent 

vortex track angle and the x-axis is measured counterclockwise from due east.  The unit vectors, denoted by 𝒊 and 𝒋, 
are parallel to the x- and y-axes, respectively.  A blue circle with two arrows within which 𝑃𝑝𝑣 is centered represents a 

cyclonically rotating parent vortex.  ∆𝑡 is a small increment of time.  The parent vortex moving at its (red) vector veloc-

ity 𝑪𝑝𝑣(𝑡) along a path (track) is indicated by a blue dotted line. 
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FIG. 4.  Idealized illustration of the motion of a subvortex in a circular trajectory having Ω𝑠𝑣(𝑡).  The radial and tangen-
tial components of the subvortex motion (speed and vortex movement direction) on the circumference of a circle 

(black) having its radius 𝐷𝑠𝑣(𝑡) (blue thick line) are, respectively, indicated by the stretching (or shrinking) position 

vector 𝐶𝑠𝑣_𝑟(𝑡) 𝐞𝑟 and the rotational velocity vector 𝐶𝑠𝑣_𝑡(𝑡) 𝐞t relative to the position of the parent vortex point 𝑃𝑝𝑣(𝑡).  

A blue, dotted line represents a track of the parent vortex. 
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FIG. 5.  Experiment A: (a)-(b) A simulated trochoidal track (red dotted curve) traced out by a simulated tornado (gray 
inner circle) revolving around a simulated parent mesocyclone (gray outer circle with four arrowheads) moving toward 

east (𝐷𝑖𝑟𝑝𝑣 = 90º) at 𝐶𝑝𝑣 = 25 m s
-1

 as a function of time (𝑡, mm:ss).  ∆𝑡 is the time increment (10 s) between two red 

dots.  One blue (black) dot on the red dotted curve represents a phased-array (WSR-88D) radar’s updates of one 
minute (5 min).  (c) The evolutionary characteristics of 𝐶𝑝𝑣 (m s

-1
,
 
black dashed line), 𝐶𝑠𝑣 (m s

-1
, green plus line), 𝐶𝑡𝑟𝑜 

(m s
-1

; red solid curve), 𝐷𝑖𝑟𝑝𝑣 (º; blue line), 𝐷𝑖𝑟𝑡𝑟𝑜 (º, black solid curve), 𝐷𝑖𝑟𝑠𝑣 (º, orange curve), 𝑅 × 10 (blue circled 

curve), 𝑃𝐿𝑡𝑟𝑜 (km, green solid curve), and 𝑃𝐿𝑝𝑣 (km, gray solid curve) are indicated.  Note that on the left-hand side of 

the panel where 𝑅 × 10 is labelled to avoid overcrowding with other profiles.  The labelled 𝑅𝑐𝑦𝑐 × 10 is indicated by a 

gray horizontal dashed line that represents the line at which a cycloid occurs at 𝑅𝑐𝑦𝑐 = 1.0.  A vertical dashed line 

represents time (min) corresponding to the time of the trochoidal track position (black dot on red dotted curve).  A tick 

mark along the abscissa represents a one-minute apart.  In panel b, the values of 𝐶𝑝𝑣, 𝐶𝑠𝑣, 𝐶𝑡𝑟𝑜, 𝐷𝑖𝑟𝑝𝑣, 𝐷𝑖𝑟𝑡𝑟𝑜, 𝐷𝑖𝑟𝑠𝑣, 𝑅, 

𝑃𝐿𝑡𝑟𝑜,and 𝑃𝐿𝑝𝑣 vary with time at the last point of the trochoidal track (red arrow at the end of the red dotted curve).  

Click here for trochoidal motion animation. 

http://www.nssl.noaa.gov/~wood/anim/expA_animated.gif
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FIG. 6.  Experiment B: Same as FIG. 5, except that 𝐶𝑝𝑣 decreases to 15 m s
-1

 to match 𝐶𝑠𝑣 .  Click here for trochoidal 

motion animation.   

  

http://www.nssl.noaa.gov/~wood/anim/expB_animated.gif
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FIG. 7.  Experiment C: Same as FIG. 5, except that 𝐶𝑝𝑣 decreases to 5 m s
-1

 to be less than 𝐶𝑠𝑣.  In (a), a red, vertical 

line is discussed in text for comparing to that in FIGS. 8 and 9.  Click here for trochoidal motion animation.    

http://www.nssl.noaa.gov/~wood/anim/expC_animated.gif
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FIG. 8.  Experiment D: Same as FIG. 5, except that 𝐶𝑝𝑣 linearly accelerates from 1 m s
-1

 at 𝑡𝑏 = 0 to 40 m s
-1

 at 𝑡𝑒 = 

30 min.  In panel b, a red sloping line is described in text.  Click here for trochoidal motion animation. 

  

http://www.nssl.noaa.gov/~wood/anim/expD_animated.gif
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FIG. 9.  Experiment E: Same as FIG. 8, except that 𝐶𝑝𝑣 linearly decelerates from 40 m s
-1

 at 𝑡𝑏 = 0 to 1 m s
-1

 at 𝑡𝑒 = 

30 min.  Click here for trochoidal motion animation. 

  

http://www.nssl.noaa.gov/~wood/anim/expE_animated.gif
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FIG. 10.  Experiment F: Same as FIG. 5, except that 𝐶𝑠𝑣 linearly accelerates from 5 m s
-1

 at 𝑡𝑏 = 0 min to 55 m s
-1

 at 

𝑡𝑒 = 30 min.  Click here for trochoidal motion animation. 

http://www.nssl.noaa.gov/~wood/anim/expF_animated.gif

