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1. INTRODUCTION 

 The development and usage of convection-
allowing models (CAMs) over the past decade has 
resulted in a general improvement in convective 
forecasts, due to their ability to reasonably 
represent the location, mode, and evolution of 
convection (Done et al. 2004; Weisman et al. 
2008). Significant questions remain, however, in 
the ability to diagnose the explicit threat of 
individual severe hazards (tornadoes, large hail, 
and damaging winds) from CAMs. Model 
diagnostics, such as updraft helicity (Kain et al. 
2008) and various hail proxies (Adams-Selin and 
Ziegler 2016; Gagne et al. 2015), have been 
developed to assess the potential for tornadoes 
and large hail. Little work, however, has been 
done in developing techniques to diagnose severe 
winds from mesoscale convective systems 
(MCSs). As a result, forecasting severe MCSs 
currently relies on  an examination of a 
combination of traditional environmental conditions 
favorable for MCSs, such as instability and vertical 
wind shear (Johns and Doswell 1992), alongside 
simulated radar and probabilistic 10-meter wind 
fields produced by CAM ensemble guidance. 
Verification of these CAM ensemble probabilistic 
10-meter wind fields is therefore crucial. 
 This study will examine severe wind forecasts 
from the Storm Prediction Center (SPC) Storm-
Scale Ensemble of Opportunity (SSEO; Jirak et al. 
2012), a seven-member ensemble comprised of 
individual deterministic CAMs, including three 
WRF-ARW members and four WRF-NMM/NEMS-
NMMB members (Table 1). Additionally, two of the 
seven members are the 12-hour time-lagged 
members of the NCEP HiRes Window runs. The 
objectives of this study include developing a 
technique for verifying probabilistic ensemble 
forecasts of severe MCS winds, providing 
guidance for the design of future CAM ensembles               
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by examining the relative importance of ARW, 
NMM, NMMB, and time-lagged members to the 
ensemble through a   stepwise removal of 
members and groups of members from the 
ensemble, and suggesting future paths for the 
improvement of ensemble forecasts with regard to 
severe MCSs. The following section will describe 
the verification methodology used in this study. 
Section 3 will show overall results and examine 
differences in ensemble performance based on 
the member or groups of members removed from 
the ensemble. Section 4 will provide two cases 
exemplifying current weakness of ensemble MCS 
forecasts and suggest paths for improvement. The 
final section will summarize the findings.  
 

 
Table 1. Membership configuration of the SPC 
SSEO 

2. VERIFICATION METHODOLOGY  

 Verification of severe wind forecasts is 
heavily complicated by the quality and coverage of 
observations available for verification, requiring 
the use of innovative techniques. Additionally, as 
this study is principally interested in examining 
forecasts of severe wind associated with 
organized MCSs, rigorous filtering of both the 



forecast and observations fields is required to 
ensure association with an organized MCS. 

The forecast field examined in this study is 
the 0000 UTC SSEO 24-hour neighborhood 
probability (i.e., forecast hours 12-36; valid 1200-
1200 UTC) of 10-meter wind greater than 30 knots 
over a three year period from 2012 to 2014. The 
forecast field is generated by first objectively 
filtering individual deterministic member 10-meter 
wind fields through removal of any wind values 
which are not within 40 km of a simulated radar 
reflectivity object with a major axis length of at 
least 100 km. Ensemble neighborhood 
probabilities are then calculated with a radius of 
influence of 40 km and smoothed using a 2-D 
Gaussian kernel density estimation (Brooks et al. 
1998) with a smoothing parameter of 120 km. An 
example of such a filtered forecast field from 24 
June 2013 is shown in Fig. 1, with a general large 
swath of ≥30% probabilities across Nebraska, 
Iowa, and Illinois. Additional smaller areas of 
probabilities can be seen over the Oklahoma and 
Texas panhandles, as well as Montana. 

 
Figure 1. 24 Jun 2013 filtered SSEO 24-hour 
neighborhood probability (%) of 10-meter wind ≥ 30 
knots. 

Ensemble forecasts are verified with local 
storm reports of wind gusts or damage from the 
SPC storm report archive. The usage of storm 
reports in verification presents significant 
challenges, as the wind storm report database has 
been shown to have significant limitations (Weiss 
et al. 2002; Trapp et al. 2006). In order to address 
these challenges, wind reports are filtered in a 
manner similar to that of the forecast field. 
Specifically, if a report does not occur within 40 km 
of an observed radar object with a major axis 
length of at least 100 km, it is filtered out. The 
filtering process ensures that reports used in 
verification are associated with organized MCS 
activity. After filtering reports are re-gridded to the 
SSEO 4-km model grid.  

 An example of the results of this filtering 
technique can be seen in Fig. 2 from 24 June 
2013. The unfiltered report field (Fig. 2a) highlights 
two main swaths of concentrated reports in which 
MCSs could conceivably have occurred. The first 
swatch stretches across the Corn Belt in Iowa, 
Illinois, and Indiana, and the second covers the 
Mid-Atlantic and Northeast regions. The observed 
radar valid at 2116 UTC 24 June 2013 (Fig. 2b) 
shows a well-organized bowing MCS over western 
Illinois, and scattered, cellular convection over the 
Northeast. The final filtered report field (Fig. 2c) 
shows that nearly all of the reports associated with 
the MCS over the corn belt were kept, while all but 
a couple of the reports associated with the 
scattered convection over the northeast have been 
removed.  
 

 

 
Figure 2. Example of report filtering by observed 
radar reflectivity from 24 June 2013. a) 24 June 
2013 unfiltered wind reports b) Observed radar 
reflectivity valid 2116 UTC 24 June 2013 c) 24 June 
2013 filtered wind reports based on observed radar 
reflectivity. 



The final step in processing the report field for 
verification is to generate a probabilistic hindcast 
using the Practically Perfect technique (Hitchens 
et al. 2013), which applies a binary neighborhood 
around reports with a radius of influence of 40 km, 
and then smooths with a 2-D Gaussian kernel with 
a smoothing parameter of 120 km (Fig. 3).  
 

 
Figure 3. 24 Jun 2013 filtered Practically Perfect 
hindcast (%) generated from wind reports. 

Thresholds can then be applied to the 
individual forecast and observed probabilistic 
swaths, allowing them to be treated as individual 
objects for object-based verification using the 
Method for Object-based Diagnostic Evaluation 
(MODE;  Davis et al. 2006a,b). MODE has 
primarily been used to perform verification of 
precipitation forecast fields and has, until now, not 
been applied to the verification of ensemble wind 
probabilistic fields. MODE compares object 
attributes of forecast and observation objects and 
generates an interest score for each pair of 
objects between the fields. First, individual 
attribute interest scores are generated based on 
comparing the following object attributes for an 
object pair: 

 Distance between object centroids 

 Minimum separation between object 
boundaries 

 Difference in orientation angle 

 Area ratio 

 Intersection area 
These individual object attributes are then 
combined in an overall interest score for the object 
pair. If that score is above 0.7, the object pair is 
determined to be a match. Contingency table 
statistics can then be generated from the MODE 
output, where a matched forecast and observed 
object is considered a hit, an unmatched observed 
object is considered a miss, and an unmatched 
forecast object is considered a false alarm.  

In order to define objects, MODE requires 
user-defined area and probability thresholds. In 
order to determine these values for this study, 
initial MODE tests using a range of area and 
probability thresholds over the three-year period 
were performed, matching MODE identified 
observation objects to manually identified MCS 
swaths. As seen in the performance diagram 
(Roebber 2009) shown in Fig. 4, the best-
performing pair of thresholds for manually 
identified MCSs was the 25% probability threshold 
and 3000 grid space (48,000 km

2
) area threshold 

pair, which had the combination of highest CSI 
score and most neutral bias. Based on the 
performance of this threshold pair for this initial 
verification, it was selected as the primary 
thresholds moving forward for forecast verification.  

 

 
Figure 4. Performance diagram showing results of 
verification for MODE identified observed MCSs to 
manually identified MCS tracks. 

3. RESULTS 
 

MODE verification was performed over the 
three-year period from 2012 to 2014 for the full 
SSEO ensemble, as well as each individual 
deterministic model. These results are shown in 
the performance diagram in Fig. 5. The most 
noticeable result from this initial verification is the 
strong performance in terms of POD of the NSSL 
WRF-ARW. Additionally, both of the 12-hour time-
lagged members from the HiRes Window had 
significantly lower PODs when compared to the 
more current HiRes Window runs. Finally, the 
SSEO ensemble outperformed all of the 
deterministic members in terms of CSI, confirming 
that an ensemble will generally outperform its 
deterministic members. 

In order to examine the relative importance of 
individual members and groups of members to the 



ensemble, a systematic stepwise removal of 
members from the ensemble membership was 
performed. MODE verification was performed over 
the same three-year period for seven different 
versions of SSEO ensemble probabilities in which 
each single member was individually removed 
from the ensemble membership. Additionally, 
verification was performed for versions in which all 
three WRF-ARW members, all four NMM/NMMB 
members, and the two time-lagged members were 
removed from the ensemble membership. 

 
Figure 5. Performance diagram comparing 
deterministic member performance to the full SSEO. 

The results for this member removal 
verification are shown in the performance diagram 
in Fig. 6. Six of the seven single member removals 
do not generally have significant impacts on the 
forecasts, as shown by the cluster of points 
around the full SSEO in black. The major 
exception occurs when removing the NSSL WRF-
ARW from the SSEO, as its removal resulted in a 
significant drop in POD. This is not surprising 
given the NSSL-WRF had a significantly higher 
POD than any other deterministic member in 
Fig.5, and shows the relative importance of the 
NSSL-WRF to the SSEO when compared to the 
other deterministic members. 
 Removing groups of members based on 
model core reveals significant differences in the 
performances of WRF-ARW and NMM/NMMB 
comprised ensembles. First, removing all 
NMM/NMMB members results in a significant 
increase in both POD and frequency bias. 
Meanwhile, removing all WRF-ARW members 
results in a significant decrease in POD. This 
generally indicates that WRF-NMM/NMMB 
members are responsible for lowering 30-knot 
convective wind probabilities in the SSEO, while 

WRF-ARW members are responsible for raising 
convective wind probabilities. This shows the 
importance of having WRF-ARW members in a 
CAM ensemble for detecting severe MCS wind 
events.  
 Removing the two 12-hr time-lagged 
members of the SSEO results in a small increase 
in POD and frequency bias, which is to be 
expected based on the reduced POD of the 
deterministic time-lagged members in Fig. 5. This 
result generally indicates that including time-
lagged members in a convection allowing 
ensemble will result in slightly lower convective 
wind probabilities generated by the ensemble (i.e., 
increased diversity/spread).  
 

 
Figure 6. Performance diagram showing results of 
removing members from the SSEO membership. 

4. IMPROVING ENSEMBLE FORECASTS OF 
SEVERE MCS WIND 
 
 While ensemble forecasts of severe wind 
from the SSEO have shown skill in outlining 
general severe MCS wind threat areas, forecasts 
are limited by the current ~4 km resolution of 
convection-allowing guidance. It has been show 
that at this relatively coarse resolution, CAMs are 
not able to fully resolve convective process 
necessary for the correct representation of 
convective wind gusts at the 10-meter level (Bryan 
et al. 2003). For this reason, the 30-knot wind 
threshold is used in the SSEO as a proxy for 
severe convective wind. This low threshold, 
however, introduces a potential limitation in which 
SSEO ensemble probabilities struggle to delineate 
between a high impact derecho-type event 
producing widespread significant wind reports 
greater than 65 knots, and a lower end MCS event 



producing mostly non-severe winds throughout its 
lifecycle. 
 An example of this limitation is presented in 
Figs. 7 and 8, showing two MCS cases which 
were forecast hits based on MODE verification of 
SSEO 30 knot wind probabilities. In the first case 
(Fig. 7a), 16 June 2014, a long-lived bowing MCS 
moved across northern and eastern Iowa, 
producing several 65 to 85 knot wind reports along 
its path. Comparatively, the second case (Fig. 8a), 
14 June 2013, featured a much less impactful 
MCS moving across eastern Nebraska and 
western Iowa and producing several damage and 
50 knot measured reports. The SSEO 30 knot 
wind probabilities for 16 June 2014 and 14 June 
2013 are shown in Fig. 7b and Fig. 8b, 
respectively. While both forecasts perform well in 
covering the general area impacted by the MCS 
wind threat, there is little to no information which 
would provide guidance as to the expected 
magnitude of the MCS threat. Maximum forecast 
probabilities in the 16 June 2014 case were in the 
low 50s, while maximum forecast probabilities for 
the 14 June 2013 case were in the 40s. 
 
 

 
Figure 7. 16 June 2014 a) SPC local storm reports 
and b) SSEO 30 knot wind ensemble probabilities. 

 This example shows the limitations of using a 
10-meter wind variable to generate CAM 
ensemble probabilities. The 30-knot threshold is 
too low to generate meaningful guidance for MCS 
magnitude and potential impacts. Due to their 
current resolution, however, CAMs do not 
generate 50 knot winds with enough frequency to 
make useful ensemble probabilities at that 
threshold or above. With that in mind it becomes 
necessary to investigate the development of proxy 
guidance from CAMs for severe MCS wind. This 
proxy guidance would need to provide information 
on both the general threat areas and potential 
magnitude of MCS events, which would provide 
forecasters with better information for producing 
high impact MCS forecasts.   
 
 
 
 
 
 
 
 
 
 

 
Figure 8. 14 June 2013 a) SPC local storm reports 
and b) SSEO 30 knot wind ensemble probabilities. 



5. SUMMARY AND CONCLUSIONS 
 
 A technique for the verification of ensemble 
probabilistic forecasts of severe MCS wind in an 
object-based framework using MODE has been 
presented. While the usage of storm reports of 
damaging wind gusts presents serious challenges 
and limitations for verification, filtering of the 
reports by observed radar reflectivity ensures that  
the storm reports used in verification are 
associated with organized MCS activity. MODE 
verification was performed for SSEO forecasts of 
24-hour probabilities of 10-meter wind speeds ≥30 
knots over a three-year period from 2012 to 2014. 
Results show that the SSEO ensemble 
outperformed its individual determinstic members 
in terms of CSI over that period.  

Additional MODE verification was performed 
over the same time period in which single 
members and groups of members were removed 
from the SSEO membership. Results show that 
removing the NSSL WRF-ARW from the SSEO 
membership had a significant negative impact on 
the performance of the ensemble. Additionally, 
removing all NMM/NMMB members significantly 
increased POD, while removing all WRF-ARW 
members from the membership significantly 
decreased POD. Removing the two 12-hour time-
lagged members from the membership saw a 
small increase in POD. These results highlight the 
importance of WRF-ARW members in a CAM 
ensemble for the prediction of severe MCS wind.  

Finally, two example cases were presented 
which illustrate the limitations of current CAM 
ensembles to provide guidance on the magnitude 
of expected MCS threats. This limitation is related 
to resolution limitations of current CAMs, and their 
inability to fully resolve physical processes 
resulting in convective gusts. In order to provide 
more meaningful ensemble guidance for MCS 
magnitude prediction, the development of proxy 
variables for severe wind is necessary and is 
currently ongoing.  
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