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1.  INTRODUCTION 
 
 The prospect for skillful long-term 
predictions of severe convective storms remains 
unclear.  This serves as the motivation for an 
ongoing assessment of the NCEP Climate Forecast 
System Version 2 (CFSv2) suite of model products 
during climatological peaks in severe convective 
weather activity.  Specifically, predictions from 
Climate Forecast System Reforecast (CFSRR) 
output have been analyzed for the spring (AMJ) 
months, and verified against output from the 
Climate Forecast System Reanalysis (CFSR). 

 Our particular focus remains on the 
predictability of convective environments at sub-
seasonal lead times through the analysis of 
parameters with well-established correlations to 
severe weather – specifically convective available 
potential energy (CAPE) and deep-layer vertical 
wind shear (VWS, hereafter DLS) as highlighted in 
the work of Brooks et al. (2003a).   

 The purpose of this research is to evaluate 
the capacity of the CFSv2 to predict these 
environments through the establishment of a 
baseline methodology for analyzing the CFSRR, 
which is utilized from a predictive standpoint, and is 
subsequently compared to a climatological 
standard developed from the CFSR. Furthermore, 
this study aims to elucidate periods of notable skill 
through a variety of methods including proportion 
correct (PC), root-mean-square-error (RMSE) and 
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Heidke skill score approaches. The methodology, 
which is predicated on cumulative distribution 
functions (CDFs) and area-under-the- curve (AUC) 
(calculated using basic trapezoidal methods using 
set limits of integration) techniques is described in 
section 2, while some of the initial key results are 
outlined in section 3.  Finally, concluding remarks 
are made in section 4. 

2.  DATA AND ANALYSIS 

 Twenty-nine years (1982-2010) of CFSRR 
output valid for individual month-long periods of 
April, May and June serve as the predictive element 
to this research.  Three-dimensional pressure files 
from the CFSRR utilized in this research are 
available every five days, starting on 1 January, 
with members available at 0000, 0600, 1200 and 
1800 UTC, and output extending forward through a 
9-month period; this output and all other data in this 
study were obtained from the NOAA NOMADS data 
repository (https://nomads.ncdc.noaa.gov/). 

An extensive baseline climatology is 
established using individual monthly (April, May 
and June) aggregates from the entire 32 years 
(1979-2010) of available CFSR data.  Annual CFSR 
output serves as a proxy for verification data.  As 
compared to archived sounding data using a 
nearest neighbor technique, the CFSR exhibits a 
negligible bias in regions of interest with regards to 
DLS, and only a mild, low bias across the western 
Great Plains with regards to CAPE. Here, CAPE is 
computed using a surface-based parcel method, 
and DLS is generated using the vector wind 
difference from the 1000-500 hPa layer, and 
represents a proxy for 0-6 km deep-layer wind 
shear.  Note that the use of near-surface and mid-
level wind components are designed to represent 
the shear that is effectively available for storm 
organization and any consequent rotation, yet 



differs from storm-relative helicity (SRH) in that 
there is no need to know, or estimate, storm motion 
a priori to performing the calculation.   

 Cumulative distribution functions of mean 
predictions and verifications (climatology) are 
generated using all available data from the 
respective model source for the individual months 
of April, May and June.  As such, the mean 
predictive CDFs are comprised of either 3480 or 
3596 individual values, while monthly climatologies 
consist of 960 or 992 members.  Subsequently, 
individual predictions comprised of all applicable 
model members are aggregated using a lagged 
average forecasting technique developed by 
Hoffman and Kalnay (1983) where all forecasts are 
assigned equal weights regardless of the length of 
the lead.  These predictions are based upon a 
specified lead-time prior to the start of a month of 
interest, with the exact lead predicated on 
availability within the 5-day period of the CFSRR.  
This can be further explained in that, for example, 
the 10-day prediction for the month of May (for any 
given year) would be the lagged average ensemble 
of all prediction members initialized on April 21st of 
the same year.  Given the focus on sub-seasonal 
time scales, predictions for leads ranging from 
approximately day-10 to week-8 are analyzed in 
this research. 

 Although the predictive (CFSRR) and 
climatological / verification (CFSR) components of 
this study originate from the same model physics, it 
is found that that CFSRR predictions exhibit non-
negligible levels of bias (relative to CFSR) in both 
CAPE and DLS, with CAPE displaying significant 
spatial variance to the bias.  Specifically, a high bias 
exists in CAPE for many areas across the central 
United States, particularly across the central Great 
Plains/High Plains. A widespread low-amplitude 
bias in DLS exists across much of the central 
CONUS (Fig. 1). 

 To address this inherent bias, the 
difference in AUC between the mean prediction 
(climatology) and the prediction for an individual 
month-long period (individual monthly verification) 
is calculated for all years of available CFSRR 
output, resulting in scalar values that communicate 
information about the CAPE / DLS environment.  
These values, termed ‘anomalous’ AUC (A-AUC) 
are developed at each grid point over select areas 
prone to severe storms to further investigate 
measures of skill.  The differencing is performed in 
a manner that allows positive (negative) A-AUC 
values to represent a prediction of an overall above- 

(below-) average period of the coincident 
parameter.  Subsequent comparison to A-AUC 
values for the climatology/individual monthly 
verification output is the basis for determining if skill 
is present in the predictions. 

 To be able to generate meaningful 
comparisons of A-AUC values both at grid point 
level as well as over larger regions, it was 
imperative to standardize the limits of integration, 
ensuring that a single outlier in the data would not 
have undue influence when calculating area-under-
the-curve.  After creating CDFs for the mean 
prediction and climatology for a given month, the 
value for each parameter at the 95th percentile was 
determined for every grid point within the domain of 
interest.  All values exceeding this measure for both 
the mean predictive and climatological CDFs as 
well as individual predictions and verifications are 
subsequently ‘truncated’ down to this value.  
Furthermore, the lowest CAPE or DLS value is 
always set to be zero, effectively normalizing the 
upper and lower bounds of integration for AUC 
calculation.  This is necessary to eliminate any 
undesirable influence from extreme values, and 
allowing the A-AUC calculation to appropriately 
convey anomalous behavior for both CFSRR 
predictions and CFSR-based verifications. 

3.  RESULTS 

 The first skill-based analysis of CFSRR 
output was predicated upon the ideology that model 
output has the potential to be more influential when 
it has a strong signal relative to the mean.  As such, 
grid points were analyzed for ‘notably anomalous’ 
behavior, i.e., grid points consisting of an A-AUC 
value greater than one standard deviation.  An 
aggregate of all years exhibiting this behavior at 
each grid point were then compared to verification 
data to see if the correct ‘sign’ was predicted.  A ‘hit’ 
was awarded if a prediction of above- (below-) 
average A-AUC verified with the proper sign, 
independent of magnitude.  Figure 2 shows the 
‘notably anomalous’ proportion correct for the 
central and eastern CONUS for May, with the 
predictive members originating 10-days prior to the 
start of the month (Fig. 2).  Strong (weak) 
performance for DLS (CAPE) is noted over the 
Plains (Midwest) with isolated areas where positive 
skill (based upon values greater than 0.5, or a 
completely random expectation) overlap.   

 Composite predictions are considered for 
specified regions including the southern Great 
Plains (SGP), central Great Plains (CGP), Midwest 
(MW) and Southeast (SE), which exhibit similar 



climatological peaks in severe weather activity 
(Brooks et al. 2003a) (Fig. 2).  Combining data 
points within each region, mean trends in skill with 
regard to lead time were analyzed by month and 
region (Fig. 3).  Note that not all CFSRR output was 
available and, as such, there are some points 
missing in the trend lines.  Positive skill (relative to 
a random prediction) in the model prediction of 
CAPE for a combination of all four regions is noted 
for all leads for April and most of June, the latter of 
which exhibits increasing skill with decreasing lead 
time (Fig. 3; upper left).  A more notable positive 
trend in skill is seen in the regional average of DLS, 
with the greatest overall skill found in April and a 
mild decrease in skill moving into May and June 
(Fig. 3; upper right). 

 Viewing individual regions averaged over 
April, May and June (or the available subset), 
minimal trends can be noted in output for CAPE, 
although the SGP region exhibits consistently high 
skill (minimal skill in the MW region) (Fig. 3; lower 
left).  Some of the most intriguing results are found 
in the DLS average for each region – whereas the 
data are somewhat chaotic beyond an approximate 
week-3 lead, a strong and consistent upward trend 
is seen from a lead time of ~21 days to a lead time 
of ~11 days, corresponding to increases of nearly 
10% in terms of ‘notably anomalous’ proportion 
correct (Fig. 3; lower right).  Furthermore, aside 
from the SE region, the CFSRR displays almost 
universally positive skill for deep-layer shear.  
Overall, when the specific focus is on notably 
above- or below-average predictions of CAPE/DLS, 
the CFSRR exhibits a generally positive measure of 
skill at lead times throughout the sub-seasonal 
temporal range. 

 Heidke skill score (HSS) values were then 
calculated for the entirety of the CFSRR period.  
Based upon a standard 3x3 contingency table, A-
AUC calculations from both predictions and 
verifications were separated by thirds into 
categories of ‘above-average’, ‘near-normal’, and 
‘below-average’ relative to a quasi-normal 
distribution of output.  Binning was performed first 
at grid point level, and secondarily over the 
previously outlined regions of specified interest.  
For the purposes of this study, skill in terms of HSS 
is defined as any value greater than zero, given the 
inherent difficulty in long-range predictions.  
Focusing on the month of May, positive skill DLS 
predictions are noted for all regions, with the 
strongest CFSRR performance noted from the 
Central Great Plains into the Midwest (Table 1).  
Skill in CAPE prediction is much more muted, with 

positive values noted in the Plains, and negative 
skill in the Midwest and Southeast regions.   

 

Table 1. Heidke Skill Scores for the month of May, 
based on 29 years of CFSRR model output 

 To better understand the meteorological 
contributors to periods of CFSRR skill, it is 
desirable to relate such skill to large-scale 
meteorological patterns and furthermore to 
phenomena such as the Madden Julian Oscillation 
(MJO) and El Nino-Southern Oscillation (ENSO), 
which have established teleconnections between 
the tropical Pacific Ocean and the CONUS 
midlatitudes. These efforts are founded upon 
studies showing the CFSv2 to possess improved 
predictability of the MJO beyond a week-2 lead by 
Zhang and van den Dool (2012), while high ENSO 
predictive skill was demonstrated by Saha et al. 
(2014).   

 Employing RMSE techniques using 
climatology as the predictive tool upon which model 
skill is based, analyses were performed within all 
regions of interest for individual years at varying 
lead times.  At the regional level, individual years 
exhibiting the highest RMSE skill (based upon 
improving model skill with decreasing leads as well 
as average RMSE difference, relative to 
climatology, over all leads) were combined for each 
parameter.  The aggregate of these years was 
subsequently used to generate plots of anomalous 
behavior of other variables, such as 500-hPa 
geopotential height and dew point at the .995 sigma 
level.  Additional sorting was performed to separate 
periods of above- and below-average verification. 

An example shown (Fig. 4) is for the SGP 
region for the month of May, comprised of three 
years (1997, 2001 and 2007) that exhibited 
predictive RMSE skill and coincided with an above-
average verification of CAPE.  The 500-hPa pattern 
shows anomalous ridging in the western CONUS 
(Fig. 4; upper left, upper right).  Furthermore, near-
surface dew point values show an influx of higher 
values across the eastern Plains (Fig. 4; lower left), 
with some mild positive anomalies across the SGP 
(Fig. 4; lower right).  It must be stressed that severe 



thunderstorms are not insinuated by this setup; this 
is simply an illustration of the concurrent pattern 
associated with positive skill in terms of CAPE in 
the SGP region.  A preliminary investigation into 
common threads between the three 
aforementioned years shows a strong (or 
strengthening) MJO in the western and/or central 
tropical Pacific Ocean – future efforts will focus on 
expanding this aspect of the study. 

4.   CONCLUSIONS / FUTURE WORK 

 The objective of this research was to 
establish a baseline for analyzing the skill of sub- 
seasonal predictions of convective environments.  
The work introduced here focuses on the reforecast 
element of the CFSv2, the CFSRR, and 
comparisons to the CFSv2 reanalysis product, 
which allows for the generation of an extended 
climatology and a basis for verification.   A variety 
of methods employed to assess model skill have 
been applied to ‘anomalous’ area-under-the-curve 
calculations at grid points across the central and 
eastern CONUS, focusing on four regions of 
particular interest.  The CFSRR has been shown to 
exhibit skill (compared to a baseline of random 
prediction or a prediction of climatology) at multiple 
leads for both CAPE and DLS, with deep-layer 
shear displaying greater overall skill than CAPE.  
Specifically, DLS was shown to have a strong 
signal of positive skill when averaged over the 
course of all available spring months (AMJ) out to 
an approximate week-3 lead. 

 Whereas this work provides a strong proof 
of concept into assessing skill of the CFSv2, 
additional tasks will be performed in order to better 
understand the association between model skill and 
the large-scale pattern, which are often driven in 
part by predictable, global-scale features such as 
the MJO and ENSO.  An algorithm for aggregating 
years and regions of significant model skill is in 
development with the goal of identifying patterns 
and/or features associated with phenomena such 
as the MJO that can be exploited at the sub-
seasonal predictive range.  Furthermore, all 
analysis techniques will be applied to the 
operational CFSv2 (2011-present) to further 
analyze established connections between model 
skill and the large-scale environment.  Finally, 
CAPE and DLS will be analyzed in tandem to better 
test the skill of the CFSv2 to predict an environment 
conducive to severe thunderstorm development.  It 
must be noted that this work is designed to analyze 
environments supportive of severe storms, but 
does not guarantee convection initiation.  

Ultimately, the goal remains to elucidate when the 
CFSv2 exhibits skill and utilize this information to 
create skillful sub-seasonal forecasts of severe 
thunderstorm activity. 
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Figure 1.  Analysis of bias in CAPE (left) and DLS (right) between the mean prediction from the CFSRR 
(May; 10-day lead) and a baseline climatology developed from the CFSR.  Warm (cool) colors represent a 
high (low) model bias.  Complimentary months exhibit similar spatial biases. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  ‘Notably Anomalous’ Proportion Correct predictions for CAPE (left) and DLS (right) (May; 10-day 
lead).  Warm (cool) colors represent positive (negative) skill compared to a random prediction. Black 
outlines define the following regions, clockwise from lower left: southern Great Plains (SGP), central Great 
Plains (CGP), Midwest (MW) and Southeast (SE). 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Time series plots (increasing lead time along the abscissa from left to right) for composites of 
‘notably anomalous’ proportion correct skill analysis.  CAPE (DLS) averaged over all regions for (available) 
individual months is shown in the upper left (upper right).  CAPE (DLS) averaged for all (available) months 
for individual regions of interest is shown in the lower left (lower right). 

 

Figure 4.  Composite (left column) and anomalous (right column) 500-hPa heights (top row) and .995 sigma 
dew point (bottom row) for years exhibiting a strong positive RMSE-based skill for CAPE in the SGP region 
during the month of May.  All years shown exhibit above-average verification of CAPE (1997, 2001 & 2007). 


