Analyzing the role of low-level forcing in significant severe weather outbreaks in the eastern U.S. ПОЯЯ Neil.Stuart@noaa.gov Joseph.Cebulko@noaa.gov

Neil A. Stuart and Joseph E. Cebulko

NOAA/National Weather Service, Albany, NY

Previous Work and Summary

- Previous research identified several factors supporting significant severe weather outbreaks
 - Elevated mixed layer with surface-based Lifted Indices exceeding -2
 - Wind core at 850-hPa ≥ 35 Kt
 - Gradient of $\theta_e \ge 25$ K at 850-hPa
- Composites for northeast, mid-Atlantic U.S. and progressive derechos were produced
 - Composites show $\Delta\theta_{\rm p} \ge 20 {\rm K}/400 {\rm Km}$
 - Individual cases showed $\Delta\theta_{p} \ge 25K/400$ Km with localized θ_{e} gradients \ge 25K/100 Km
 - $\Delta\theta_{\rm e}$ in units of K/400 Km is more representative of the synoptic scale density discontinuity than localized θ_e gradients in units of K/100 Km
 - Low magnitude $\Delta\theta_{\rm p}$ depicted in the derecho composites due to the varying spatial positions of the θ_e gradients for each case

Future Work

Display magnitudes of $\Delta\theta_{\rm e}$ and $\theta_{\rm e}$ gradients in units of K/400Km for research and operational applications

Note the differences in magnitudes of gradients based on the resolution

 $\theta_{\rm e}$ gradient Vs. $\Delta\theta_{\rm e}$

- Gradient magnitude is $\Delta\theta_{\rm e}$ in units of K/100Km, therefore small scale tight gradients exhibit inflated values
 - Need to display the $\Delta\theta_e$ in units of K/400Km to resolve the synoptic scale density discontinuity