
•  MLCAPE < 1000 J kg-1:  49 percent of 
U.S. tornadoes 1 

•  MLCAPE < 500 J kg-1:  16 percent of 
significant tornadoes 1 

•  Tornado watches 2 and warnings 3 are 
less accurate 

•  Radar detection is limited 4 

Are processes leading to 
supercell tornadogenesis 

different with lower CAPE? 
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Andrew Wade and Matthew Parker    North Carolina State University, Raleigh, NC 

Why high-shear low-CAPE? 

Method 

Comparisons across a 
CAPE spectrum 

Sensitivity to model physics 

Conclusions 

Idealized modeling with CM1 5  
 

•  Horizontally homogeneous base state 
taken from HRRR analysis of southeastern 
U.S. event 

•  Updraft nudging initiation 

•  100-m horizontal grid 

•  Lowest scalar level 10 m AGL 

•  NSSL 2-moment microphysics 6 

•  Free-slip bottom boundary 

•  High-shear low-CAPE supercell vortices and their genesis are confined to 
relatively low levels, consistent with radar detection difficulties. 

•  Parcels in these vortices often stagnate near the shallow vortex top; 
high-CAPE vortex parcels continue upward to the equilibrium level. 

•  Some low-CAPE supercells produce weak cold pools, but use of density 
potential temperature still reveals baroclinity. 

•  Low-CAPE supercell simulations are sensitive to common differences in 
model physics.  Friction has an unexpected effect—input appreciated! 

Current and future work:  reasons for sensitivity to bottom boundary 
condition, pressure gradient accelerations at top of low-CAPE vortices, 
inclusion of topography similar to southeastern U.S. 
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Parcels entering a high-
CAPE vortex ascend 

monotonically to near the 
equilibrium level 

Parcels entering a low-CAPE vortex stop 
ascending, at least temporarily, at 1.5 – 2 km AGL 

Time-height maximum vertical velocities in the same case with (left to right) 
free-slip lower boundary, semi-slip water surface, and semi-slip land surface 

Density potential 
temperature perturbations 
in a low-CAPE case with 

NSSL 6 (left) and Morrison 7 
(right) microphysics 

Skew-T log-p & hodograph Peak time reflectivity, vertical vorticity, density potential temperature perturbations, 1 km w Time-height updraft and vorticity maxima near mesocyclone 

8 cases (7 shown) from 31 Mar 2016 with 
MLCAPE near or below 1000 J kg-1 

 
1 case (top row) from 27 Apr 2011 
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