Observational Validation of Layer-lifting Metrics of Convective
Instability for Determining the Dissipation of Severe MCSs
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1. Background

Layer-lifting indices measure the latent-heating achievable by all
inflowing parcels in forward-propagating MCSs, contemplating both the
instability of air at low-levels and the dilution produced by mid-level
inflow (Fig. 1, see Alfaro 2017). Motivated by potential applications to
forecasting MCS maintenance, we evaluate the effectiveness of layer-
lifting indices for discriminating between mature and dissipating MCSs.
Based on Alfaro and Coniglio (2018), hereafter AC18.
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Figure 1. Layer-lifting ascent produced by the cold pool. The potential latent-heating by all
unstable parcels is measured by integrated CAPE (ICAPE). Layer-lifting CAPE (CAPE;) is an
inflow-weighted mean CAPE, wherein greater inflow of stable mid-level air (gray arrows)

causes greater dilution of buoyancy. Small AU produces greater inflow of mid-level air, implying
lower CAPE,,. From Alfaro (2017).

2. Methods

Radar reflectivity plots were used to subjectively identify 131 severe, linear
and forward-propagating MCSs during the warm season over the
continental US (2010-2014). Times and locations of maturity and
dissipation were determined to specify the MCS’s environment at each
stage (Fig. 2). Relevant environmental metrics were computed from
RUC/RAP analysis data (Table), excluding precipitating grid-points.
Following Coniglio et al. (2007), non-parametric statistical analyses
(Wilcoxon signed-rank test) were used to determine a metric’s ability to
discriminate between stages.
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IF; -> Inflow Fraction of air below |-Ear_Shearos
X km to total inflow (dilution) | MPar Shear:.s

LR -> Lapse Rate MPar Shears.o
PW -> Precipitable Water MPerp Windg.:
MPar -> Motion-parallel MPerp Windzs

MPerp -> Motion-perpendicular MPerp Windi.o

SVM -> Shear Vector Magnitude MPerp Shearo.z

Figure 2. Radar rEerCtiVity of mature (tOp) Wind -> Mean wind over the layer | MPerp Shears.s

and dissipating (bottom) MCS. Arrow shows indicated by the subscript | \rpe Shears o

the MCS’s movement. Purple area is the
MCS’s environment. From AC18.

(in km) where metric is computed.

a) T-statistic Z-scores, thermodynamic metrics b) T-statistic Z-scores, kinematic metrics
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Figure 3. T-statistic Z-scores for metrics that reached 0.05 statistical significance. Dark
bars indicate metrics that tend to decrease in value as MCSs dissipate. Red rectangles
indicate layer-lifting indices. From AC18.

Table. Environmental metrics under
consideration. Subscripts denote layer

3. Results

Figure 3 shows Z-scores attained by all metrics.
Higher Z-scores imply greater skill to discriminate
MCS stage. Layer-lifting metrics CAPE,, ICAPE, IF,
(measuring dilution due to kinematics) and
ICAPExIF; are among the most skillful
discriminators. Mid-tropospheric inflow
(MPar_Wind) has high Z-score due to impacts on
buoyancy dilution (Fig. 1). The skillfulness of
CAPE, is revealed in Fig. 4 by the small overlap
between mature and dissipating populations,
and the difference in mean/median. Nearly
identical results were obtained when estimating
MCS movement with Corfidi vectors (not shown;
see AC18), paving the way for applying CAPE; to
guide MCS maintenance forecasts.
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Figure 4. Box-whisker plot of standardized metrics at maturity and
dissipation, showing mean (cross), median (solid line) and optimal
discriminating threshold (dashed line). From AC18.

4. Conclusions

Diminishing layer-lifting convective instability
appears to be a primary driver of MCS dissipation,
complementing numerical analyses by Alfaro
(2017) showing that MCS intensity is mainly
dependent on layer-lifting latent heating. CAPE,
could provide valuable information to forecasters,
e.g. helping reduce the false alarm rate.
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