Determining Missed Events when Evaluating Probabilistic Convective Outlooks

Nathan M. Hitchens

Introduction

- Probabilistic outlooks above the minimum thresholds (2 or 5\%) are difficult to assess
- Not every observed storm report (OSR) is forecast by these heightened outlooks
- How can those OSRs that should be used to evaluate a particular outlook be identified?
- If OSRs can be linked to specific outlooks for evaluation purposes, missed events can also be determined

Data \& Methods

- Probabilistic outlooks (issued at 06 UTC) and corresponding OSRs were gridded on an $80-\mathrm{km}$ lat-lon grid for each day during 2006-15
- OSR grid boxes were assigned values of ' 0 ' or ' 1 ', and smoothed to form "Practically Perfect" (PP) forecasts with values ranging from 0.0 to 1.0
- PP forecasts take on the appearance of convective outlooks by identifying a threshold value (e.g. 0.5) and making a contour
- For each day, OSRs are compared to PP contours beginning at 0.01 until the coverage meets or exceeds the outlook probability value

Preliminary Results

- Those OSRs within an identified PP contour are used to evaluate the corresponding convective outlook using metrics from 2×2 contingency tables (i.e., POD, FAR, CSI)
- A forecast is skillful when its CSI value is higher than that achieved using the 0.0 PP contour
- Measures are calculated using either all days (including missed events), or only those days on which convective outlooks were issued

- This approach identifies too many missed events
- The rate at which forecasts are skillful increases as probability values rise

- The rate at which outlooks are incorrectly issued decreases with incr. probs

- When comparing scores based upon this approach vs using all OSRs for all outlooks small improvements in POD and CSI were observed
- Larger differences in POD and CSI values are evident when calculating using all days vs only outlook days
- On the reliability diagram, hail and wind were well forecast, while tornadoes were under-forecast at higher probabilities
- At higher probabilities, there are too few forecasts to identify meaningful trends or draw meaningful conclusions

Continuing Work

- The number of missed events identified using this approach is a problem, but one solution to reducing this number may lie in incorporating the magnitude and severity of OSRs into it

