

Research Questions

Can we automate the detection of QLCSs with high accuracy?

Gallus et al. (2008) and Smith et al. (2012) hand-labeled (n=~10³)

Where do QLCSs occur in the U.S.?

~10⁶ available radar images to assess across 22 years

What percentage of severe reports are produced by QLCSs?

Match ~10⁵ severe reports with ~10⁶ radar images

Data and Methods

Data for 1996 through 2017 include:

 \rightarrow NOWrad radar mosaics at 2 x 2 km, 15 min. resolution \rightarrow SPC's SVRGIS, including reported severe hail ($\geq 1''$), severe nontornadic wind (\geq 58 mph), and tornadoes

QLCS classification:

 \rightarrow Image classification problem

- Convolutional neural network
- Hand classified 3,000 samples of QLCS/ Non-QLCS radar signatures
- 93% testing accuracy

QLCS Tracking:

- \rightarrow See MCS tracking method in Haberlie and Ashley (2018a, b JAMC)
- \rightarrow Extract t-storm clusters that are \geq 40 dBZ and ≥100 km with ≥3:1 length-to-width ratio = slices
- \rightarrow Spatiotemporal overlap to associate clusters in time = swaths
- \rightarrow Cluster is QLCS if classified as a QLCS with 95% confidence during two consecutive hours

Determining QLCS-affiliated storm report:

512 x 512-km box around report

vity data around each report is used to produce classifications. A moving window of 256 x 256 km is centered on specific pixels within a 100-km radius of each report and classified by the convolutional neural network. If the highest QLCS classification probability within this radius exceeds 50%, the report is considered to be QLCS-related. This process mimics how a human observer would examine the mesoscale region around a report to assess storm mode.

Fig. 1. Samples of QLCSs and Non-QLCS used to inform image classification approach

A Climatology of Quasi-linear Convective Systems in the U.S. Walker S. Ashley¹, Alex M. Haberlie², and Jacob Strohm¹

¹Department of Geographic and Atmospheric Sciences, Northern Illinois University ²Department of Geography and Anthropology, Louisiana State University

Wind otal Count of Bound

Annual Frequency Overall

Fig. 3. Mean annual frequency of QLCSs, 1996-2017.

Year of Report

in this study. Maps represent the percent of hazards reported in an 80 x 80-km grid cell due to QLCS structures; only cells with \geq 10 reports are filled.

Fig. 6. Mean monthly frequency of QLCSs, 1996-2017.

QLCS Storm Reports

Conclusions

 \rightarrow Image classification has high testing accuracy supported by subjective validation and summary statistics

 \rightarrow 3,064 QLCSs tracked over 22-yr period; mean of 139 yr⁻¹ with primary corridor east of I-35 in the central/lower Mississippi and Ohio Valleys; QLCS max is located in southeast Kansas, with a mean of 16 yr^{-1}

 \rightarrow Maximize in late-spring / early summer, with a notable drop off from June to July

- \rightarrow QLCSs are responsible for spatiotemporal variable proportion of severe reports
- \rightarrow Max QLCS severe report attribution (40-60%) is in western Ohio River and central Mississippi **River Valleys**
- \rightarrow In some locations, >50% of tornadoes are associated with QLCSs
- \rightarrow Percent of QLCS-affiliated tornado and wind reports maximize during overnight and coolseason