Impact of Terrain on Supercells According to Idealized Simulations with Actual Terrain
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1) Motivation and Methodology 3) Near-Surface Rotation 5) Updraft Rotation

 Motivation: Use idealized modeling framework to better understand * These figures show “swaths” of maximum vertical vorticity (() at the lowest * These figures show “swaths” of maximum 2-5 km AGL vertically inte-
the interactions of supercells with topography. model level (z = 25 m AGL) from all simulations. grated updraft helicity (UH).

« Methodology: Use topography and environment from an actual case.

Maximum Vertical Vorticity (s'), Ensemble Maximum Maximum Updraft Helicity (m2 s-2), Ensemble Maximum
Environment: BMX sounding, 18 UTC , 27 April 2011 (E é
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Model Setup:

e Use CM1, Ax = Ay = 500 m, 112 levels (Az = 50 m near surface)
 Morrison microphysics (with reduced raindrop breakup)

« “Constant” environment (no surface drag, no radiation)

e Storms initiated with “updraft nudging” technique x (km)
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2) An Ensemble Approach 4) Environmental Conditions 6) Storm Structure

 Vertical cross sections: Vertical vorticity (shaded); cloud boundary

» To address the influence of different topographic features, a “No Terrain” * These figures illustrate how the topography modifies the thermodynam-
(black contour); buoyancy (dashed purple contour).

simulation is conducted, plus three different “With Terrain” simulations in ic and kinematic properties of the environment. These results are from a
which the updraft “trigger” is progressively shifted 10 km northward. simulation without a supercell storm (i.e., no updraft nudging) att =4 h. () No Terrain | 4 ; () With Terrair

* To evaluate the robustness of each configuration, an ensemble of simula-
tions is produced; each setup is conducted 10 times with a different set of Lifted Condensation Level (LCL; mAGL) ~0-1km AGL shear vector magnitude (m s-)

initial moisture perturbations (0.5 g/kg for z < 1 km).

Time series of maximum vertical vorticity (s-') at lowest model level:
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T T o T R T « Differences in storm structure are subtle. The “With Terrain” simulations (right) tend to have lower
cloud base, narrower updrafts, and shallower cold pools

max. & (s™) at first model level (z
max. ¢ (s™') at first model level (z

 LCL and cloud base are lower  Near-surface shear tends to be

time (hours) time (hours) at higher altitudes. lower at higher altitudes, except Acknowledgments:
on the downstream ends of ridges.
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