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1)  Motivation and Methodology  
• Motivation:  Use idealized modeling framework to better understand 
the interactions of supercells with topography. 
• Methodology:  Use topography and environment from an actual case. 

Environment:  BMX sounding, 18 UTC , 27 April 2011Environment:  BMX sounding, 18 UTC , 27 April 2011

Topography:  Southeastern USA, tapered toward zero near the 
model boundaries.
Topography:  Southeastern USA, tapered toward zero near the 
model boundaries.

Model Setup:
• Use CM1, Δx = Δy = 500 m,  112 levels (Δz = 50 m near surface)
• Morrison microphysics (with reduced raindrop breakup)
• “Constant” environment  (no surface drag, no radiation)
• Storms initiated with “updraft nudging” technique
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2)  An Ensemble Approach
• To address the influence of different topographic features, a “No Terrain” 
simulation is conducted, plus three different “With Terrain” simulations in 
which the updraft “trigger” is progressively shifted 10 km northward.
• To evaluate the robustness of each configuration, an ensemble of simula-
tions is produced;  each setup is conducted 10 times with a different set of 
initial moisture perturbations (±0.5 g/kg for z < 1 km).     

• Near-surface vertical vorticity tends to be larger when there is no terrain.

Time series of maximum vertical vorticity (s-1) at lowest model level:

3)  Near-Surface Rotation
• These figures show “swaths” of maximum vertical vorticity (ζ) at the lowest 
model level (z = 25 m AGL) from all simulations.

Maximum Vertical Vorticity (s-1), Ensemble Maximum

Maximum Vertical Vorticity (s-1), Ensemble Average

4)  Environmental Conditions
• These figures illustrate how the topography modifies the thermodynam-
ic and kinematic properties of the environment.  These results are from a 
simulation without a supercell storm (i.e., no updraft nudging) at t = 4 h. 
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Lifted Condensation Level (LCL; m AGL)

• LCL and cloud base are lower 
at higher altitudes.

0-1 km AGL shear vector magnitude (m s-1)

• Near-surface shear tends to be 
lower at higher altitudes, except
on the downstream ends of ridges.
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5)  Updraft Rotation  
• These figures show “swaths” of maximum 2-5 km AGL vertically inte-
grated updraft helicity (UH).

Maximum Updraft Helicity (m2 s-2), Ensemble Maximum
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6)  Storm Structure
• Vertical cross sections:  Vertical vorticity (shaded);  cloud boundary 
(black contour);  buoyancy (dashed purple contour).

• Di�erences in storm structure are subtle.  The “With Terrain” simulations (right) tend to have lower 
cloud base, narrower updrafts, and shallower cold pools
• Di�erences in storm structure are subtle.  The “With Terrain” simulations (right) tend to have lower 
cloud base, narrower updrafts, and shallower cold pools
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